Temperature variability in soils is expected to increase due to the more frequent occurrence of heat waves, putting species under thermal stress. In addition, organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) are released into the environment due to anthropogenic activities. Both stressors negatively impact terrestrial organisms and may interact with each other. Here, we subjected the soil living enchytraeid, Enchytraeus albidus, to combined exposure to phenanthrene (PHE; 0, 10, 20, 40, and 80 mg kg dry soil) and a range of temperature treatments (constant temperature (CT): 10, 15 and 20 °C; different mean temperature with the same daily temperature fluctuation (DTF-5): 10 ± 5, 15 ± 5 and 20 ± 5 °C; daily temperature fluctuation with the same mean, but different amplitudes (DTF-A): 20, 20 ± 2, 20 ± 5 and 20 ± 7 °C). We measured internal PHE concentration in adults and found that an increase in mean temperature significantly increased the internal PHE concentration. The production of juveniles was measured using a standardized test. We found a synergistic interaction between the temperature amplitude (DTF-A treatments) and PHE on the reproduction of E. albidus. The EC of reproduction decreased with increasing amplitude. These results show that the negative effects of PHE on E. albidus can be magnified if stressful temperatures are reached (although briefly) during diurnal fluctuations of soil temperature. Our results highlight the importance and inclusion of extreme thermal events in the risk assessment of pollutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.162403 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!