AI Article Synopsis

Article Abstract

IL-1α is an intracellular danger signal (DAMP) released by macrophages contributing to the development of silica-induced lung inflammation. The exact molecular mechanism orchestrating IL-1α extracellular release from particle-exposed macrophages is still unclear. To delineate this process, murine J774 and bone-marrow derived macrophages were exposed to increasing concentrations (1-40 cm/ml) of a set of amorphous and crystalline silica particles with different surface chemical features. In particular, these characteristics include the content of nearly free silanols (NFS), a silanol population responsible for silica cytotoxicity recently identified. We first observed de novo stocks of IL-1α in macrophages after silica internalization regardless of particle physico-chemical characteristics and cell stress. IL-1α intracellular production and accumulation were observed by exposing macrophages to biologically-inert or cytotoxic crystalline and amorphous silicas. In contrast, only NFS-rich reactive silica particles triggered IL-1α release into the extracellular milieu from necrotic macrophages. We demonstrate that IL-1α is actively secreted through the formation of gasdermin D (GSDMD) pores in the plasma membrane and not passively released after macrophage plasma membrane lysis. Our findings indicate that the GSDMD pore-dependent secretion of IL-1α stock from macrophages solely depends on cytotoxicity induced by NFS-rich silica. This new regulated process represents a key first event in the mechanism of silica toxicity, suitable to refine the existing adverse outcome pathway (AOP) for predicting the inflammatory activity of silicas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025216PMC
http://dx.doi.org/10.1007/s00204-023-03463-xDOI Listing

Publication Analysis

Top Keywords

il-1α
8
macrophages
8
necrotic macrophages
8
nfs-rich silica
8
il-1α intracellular
8
silica particles
8
plasma membrane
8
silica
7
gasdermin membrane
4
membrane pores
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!