Sensitivity considerations on denoising series of spectra by singular value decomposition.

Magn Reson Chem

CERM and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, 50019, Italy.

Published: June 2023

When acquiring series of spectra ( , CP buildup curves, etc.) on samples with poor SNR, we are usually faced with choosing between taking a few points with a large number of scans to maximize the SNR or more points with a smaller number of scans to maximize the information content. In this Letter, we show how low-rank decomposition can be used to denoise a series of spectra, reducing the trade-off between the number of scans and the number of experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrc.5338DOI Listing

Publication Analysis

Top Keywords

series spectra
12
number scans
12
scans maximize
8
sensitivity considerations
4
considerations denoising
4
denoising series
4
spectra singular
4
singular decomposition
4
decomposition acquiring
4
acquiring series
4

Similar Publications

Van der Waals (vdWs) materials are promising candidates for hetero-integration with silicon photonics toward miniaturization and integration. VdWs materials like molybdenum telluride and black phosphorus, despite being prominent, exhibit air sensitivity, and their room temperature emissions can be significantly broadened by tens of meV. Here, a self-encapsulation strategy is developed to scalably synthesize robust 2D vdWs ErOCl with sub-meV narrow emissions at the telecom C-band.

View Article and Find Full Text PDF

Aqueous antibacterial colloids are potential agents that kill bacteria via physical contact. Conventionally, antibacterial agents are designed to be small, cationic, or hydrophobic. However, hydrophobic materials easily aggregate in aqueous media, drastically inhibiting their activity.

View Article and Find Full Text PDF

Spectroscopic aspects of underwater digital holography of plankton.

Sci Rep

January 2025

Laboratory for Radiophysical and Optical Methods of Environmental Research, National Research Tomsk State University, Tomsk, Russia, 634050.

Monitoring the parameters and behavior of plankton makes it possible to assess the state of the aquatic ecosystem and detect the beginning of an environmental disaster at an early stage. In this respect, the most informative method for the in situ plankton study is underwater digital holography. This method allows obtaining information on the size, shape, and location of plankton individuals, as well as performing their classification and biotesting according to their behavioral responses using a submersible holographic camera non-invasively, in real time, and in the automatic mode.

View Article and Find Full Text PDF

This study presents a novel approach that combines thermogravimetric analysis with time-of-flight mass spectrometry (TG-TOFMS), principal component analysis (PCA), and Kendrick mass defect (KMD) analysis─referred to as TG-PCA-KMD─to investigate molecular-scale structural changes and quantitatively assess the progression of thermo-oxidative degradation in glass fiber reinforced polypropylene (GF/PP). TG-TOFMS enables the simultaneous and sensitive detection of both structural changes due to thermo-oxidative degradation and compositional changes in the filler and matrix. PCA and KMD analysis are crucial for identifying specific ion series derived from the degraded PP matrix in the high-resolution mass spectra obtained through TG-TOFMS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!