Serum hepatitis B virus (HBV) RNA is a new serological indicator reflecting viral replication with good clinical application prospects. This study aimed to clarify the dynamic changes of serum HBV RNA levels and the quasispecies of HBV RNA virus-like particles in nucleos(t)ide analogues (NAs)-experienced chronic hepatitis B (CHB) patients harboring NAs-resistant mutations and their identifiable effects on NAs resistance. We included CHB patients who were on long-term NAs treatment and with HBV DNA rebound. The longitudinally dynamics of serum HBV RNA levels were quantitatively detected, and the quasispecies differences between serum HBV DNA and serum HBV RNA were compared by high-throughput sequencing. The effect of NAs concentration pressure on altering the resistance mutations quasispecies proportion of HBV DNA and HBV RNA in cell supernatant was analyzed in vitro. A total of 447 serum samples from 36 CHB patients treated with NAs were collected. The median follow-up period was 47 months (about 4 years), and the longest follow-up period was 117 months (about 10 years). Our results showed that HBV RNA could reflect virological breakthrough in 23 (64%, 23/36) patients, and serum HBV RNA rebound earlier than HBV DNA in 12 (52%, 12/23) patients. However, serum HBV RNA remained at a consistently high level and did not fluctuate significantly with the HBV DNA rebound in 6 of 36 patients. In addition, serum HBV RNA was not consistently detectable in 7 of the 36 patients, and their serum HBV RNA was undetectable even after HBV DNA had rebounded. The proportion of drug-resistant mutations in HBV DNA was higher than that of HBV RNA by high-throughput sequencing. The results of in vitro experiments showed that the viral strains with drug-resistant mutation in HBV DNA in cell supernatants gradually become the dominant strains with the increase of NAs concentrations. Serum HBV RNA levels can reflect virological breakthrough in most NAs- treated CHB patients, but there are certain limitations. NAs alter the quasispecies composition of serum HBV DNA and serum HBV RNA, resulting in a higher detection rate of drug-resistant mutations in serum HBV DNA than in serum HBV RNA.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmv.28612DOI Listing

Publication Analysis

Top Keywords

hbv rna
64
serum hbv
60
hbv dna
44
hbv
27
serum
17
dna serum
16
rna
16
chb patients
16
rna levels
12
patients serum
12

Similar Publications

Background: Due to the unique geographical and climatic conditions in Nagqu (Tibet), the blood station laboratory was only fully established and accredited by 2020. This study validated the performance of the laboratory's blood screening system and analyzed recent trends in blood donation and screening effectiveness.

Methods: Various serum samples were used to assess the performance of hepatitis B, hepatitis C, HIV, and syphilis tests, both serological and nucleic acid tests.

View Article and Find Full Text PDF

Unlabelled: Chronic Hepatitis B (CHB) remains a major public health problem, leading to various complications such as liver fibrosis, cirrhosis, and hepatocellular carcinoma. The existing diagnostic markers for Hepatitis B virus (HBV) are limited in distinguishing different CHB phases and intra-hepatic viral replication activity. In the past few years, several non-invasive potential blood markers that reflect viral intra-hepatic replicative state more accurately have been in progress and are gaining importance.

View Article and Find Full Text PDF

Serum O-glycosylated HBsAg levels correlate with HBV RNA in HBeAg positive CHB patients during antiviral therapy.

Antiviral Res

January 2025

Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. Electronic address:

Background: Recent evidence has indicated that the O-glycosylated PreS2 domain of the middle HBsAg is a distinguishing characteristic that allows the identification of HBsAg of HBV Dane particles and SVPs. This study's objective was to assess the changes in serum O-glycosylated HBsAg levels in CHB patients undergoing ETV or Peg-IFNα treatment.

Methods: Our retrospective study enrolled 86 patients with genotype C CHB.

View Article and Find Full Text PDF

Prediction of cccDNA dynamics in hepatitis B patients by a combination of serum surrogate markers.

PLoS Comput Biol

January 2025

Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.

Quantification of intrahepatic covalently closed circular DNA (cccDNA) is a key for evaluating an elimination of hepatitis B virus (HBV) in infected patients. However, quantifying cccDNA requires invasive methods such as a liver biopsy, which makes it impractical to access the dynamics of cccDNA in patients. Although HBV RNA and HBV core-related antigens (HBcrAg) have been proposed as surrogate markers for evaluating cccDNA activity, they do not necessarily estimate the amount of cccDNA.

View Article and Find Full Text PDF

Xalnesiran with or without an Immunomodulator in Chronic Hepatitis B.

N Engl J Med

December 2024

From the Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University (J.H., X.L.), and the State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Institute of Hepatology, Nanfang Hospital (J.H.), Guangzhou, the Department of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University (W.Z.), the Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine (Q.X.), Roche Holding (Q.B., E.C.), Roche Research and Development Center (C.C., Y.H.), and Takeda APAC Biopharmaceutical Research and Development (Q.B.), Shanghai, the Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun (R.H.), the Center of Infectious Diseases, Laboratory of Infectious and Liver Disease, Institute of Infectious Diseases, West China Hospital, Sichuan University, Chengdu (H.T.), and the Department of Medicine and State Key Laboratory of Liver Research, Queen Mary Hospital, University of Hong Kong, Hong Kong (M.-F.Y.) - all in China; the Division of Infectious Diseases, University Hospital Álvaro Cunqueiro, Galicia Sur Health Research Institute, Servizo Galego de Saúde-Universidade de Vigo, Vigo, Spain (L.E.M.A.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Veterans General Hospital (S.-S.Y.), and the Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University (C.-Y.P.), Taichung, the Department of Internal Medicine, Changhua Christian Hospital, Changhua (W.-W.S.), Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung (W.-L.C.), and National Taiwan University Hospital, Taipei (J.-H.K.) - all in Taiwan; the Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea (D.J.K.); the HIV Netherlands Australia Thailand Research Collaboration, Thai Red Cross AIDS Research Center and the Center of Excellence in Tuberculosis, Faculty of Medicine, Chulalongkorn University, Bangkok (A.A.), and the Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai (A.L.) - both in Thailand; Université de Paris-Cité, Department of Hepatology, Assistance Publique-Hôpitaux de Paris, Hôpital Beaujon, Centre de Recherche sur l'Inflammation, INSERM Unité Mixte de Recherche 1149, Paris (T.A.); F. Hoffmann-La Roche, Basel, Switzerland (F. Canducci, M.T.C., F. Chughlay, K.G., N.G., P.K., R.K., M.T.); Roche Products, Welwyn Garden City (S.D., V.P., B.S., R.U., C.W.), and ID Pharma Consultancy, Yelverton (C.W.) - both in the United Kingdom; Enthera Pharmaceuticals, Milan (F. Canducci); Parexel International, Hyderabad, India (A.P.); and the New Zealand Liver Transplant Unit, Auckland City Hospital, Auckland, New Zealand (E.G.).

Background: Xalnesiran, a small interfering RNA molecule that targets a conserved region of the hepatitis B virus (HBV) genome and silences multiple HBV transcripts, may have efficacy, with or without an immunomodulator, in patients with chronic HBV infection.

Methods: We conducted a phase 2, multicenter, randomized, controlled, adaptive, open-label platform trial that included the evaluation of 48 weeks of treatment with xalnesiran at a dose of 100 mg (group 1), xalnesiran at a dose of 200 mg (group 2), xalnesiran at a dose of 200 mg plus 150 mg of ruzotolimod (group 3), xalnesiran at a dose of 200 mg plus 180 μg of pegylated interferon alfa-2a (group 4), or a nucleoside or nucleotide analogue (NA) alone (group 5) in participants with chronic HBV infection who had virologic suppression with NA therapy. The primary efficacy end point was hepatitis B surface antigen (HBsAg) loss (HBsAg level, <0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!