Photoperiod Genes Contribute to Daylength-Sensing and Breeding in Rice.

Plants (Basel)

State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China.

Published: February 2023

Rice ( L.), one of the most important food crops worldwide, is a facultative short-day (SD) plant in which flowering is modulated by seasonal and temperature cues. The photoperiodic molecular network is the core network for regulating flowering in rice, and is composed of photoreceptors, a circadian clock, a photoperiodic flowering core module, and florigen genes. The Hd1-DTH8-Ghd7-PRR37 module, a photoperiodic flowering core module, improves the latitude adaptation through mediating the multiple daylength-sensing processes in rice. However, how the other photoperiod-related genes regulate daylength-sensing and latitude adaptation remains largely unknown. Here, we determined that mutations in the photoreceptor and circadian clock genes can generate different daylength-sensing processes. Furthermore, we measured the yield-related traits in various mutants, including the main panicle length, grains per panicle, seed-setting rate, hundred-grain weight, and yield per panicle. Our results showed that the , and mutants can change the daylength-sensing processes and exhibit longer main panicle lengths and more grains per panicle. Hence, the , and locus has excellent potential for latitude adaptation and production improvement in rice breeding. In summary, this study systematically explored how vital elements of the photoperiod network regulate daylength sensing and yield traits, providing critical information for their breeding applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959395PMC
http://dx.doi.org/10.3390/plants12040899DOI Listing

Publication Analysis

Top Keywords

latitude adaptation
12
daylength-sensing processes
12
circadian clock
8
photoperiodic flowering
8
flowering core
8
core module
8
main panicle
8
grains panicle
8
daylength-sensing
5
rice
5

Similar Publications

Coral populations across the Great Barrier Reef (GBR) could rapidly adapt to the warming climate if they have standing genetic variation for thermal tolerance. Here, we describe a locus likely involved in latitudinal adaptation of Acropora millepora. This locus shows a steep latitudinal gradient of derived allele frequency increasing at higher latitudes, and harbours a cluster of eight tandemly repeated Δ9-desaturase genes adjacent to a region in the genome where a hard selective sweep likely occurred.

View Article and Find Full Text PDF

Although we have evidence that many organisms are exhibiting declines in body size in response to climate warming, we have little knowledge of underlying mechanisms or how associated phenotypic suites may coevolve. The better we understand coadaptations among physiology, morphology, and life history, the more accurate our predictions will be of organismal response to changing thermal environments. This is especially salient for ectotherms because they comprise 99% of species worldwide and are key to functioning ecosystems.

View Article and Find Full Text PDF

Trophic niche adaptation of mountain frogs around the Sichuan Basin: individual specialization and response to climate variations.

Front Zool

December 2024

Chengdu Institute of Biology, Chinese Academy of Sciences, No. 23, Qunxian South Road, Tianfu New Area, Chengdu, 610213, China.

Background: Climatic and geographic variations have profound effects on the resource utilization of individuals and populations. Evaluating resource use in different environments is crucial for understanding species ecological adaptation strategies and promoting biodiversity conservation. Stable isotopes are widely used to assess trophic niches, providing quantitative indicators of ecological interactions between organisms and resource use in ecosystems.

View Article and Find Full Text PDF

Japanese macaques are ideal to advance understanding of a wide-spread pattern of recurrent developmental distress in great apes, preserved as repetitive linear enamel hypoplasia (rLEH). Not only are they numerous, unendangered, and well-studied, but they are distributed from warm-temperate evergreen habitats in southern Japan to cool-temperate habitats in the north, where they are adapted behaviorally and phenotypically to winter cold and seasonal undernutrition. We provide a pilot study to determine if enamel hypoplasia exists in Japanese macaques from the north and, if temporal patterns of enamel hypoplasia are consistent with seasonal cold, undernutrition and/or exposure to secondary plant compounds.

View Article and Find Full Text PDF

Global warming has significantly altered plant phenology by advancing the timing of leaf emergence, impacting vegetation productivity and adaptability. Winter and spring temperatures have commonly been used to explain spring phenology shifts, but we still lack a solid understanding of the effects of interactions between conditions in different seasons. This study utilizes normalized difference vegetation index (NDVI) and meteorological data to examine the effects of changes in winter and spring temperatures and precipitation on the start of the vegetation growing season (SOS) at high latitudes in China from 1982 to 2015.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!