Mill's extracts have been explored for antibacterial and antioxidant efficacies. However, there is limited information on its chemical composition and mechanism of action. The purpose of this study was to assess the chemical composition, antibacterial and antioxidant activities and mechanism of the whole leaf extract of Mill. The phytochemical profile was analysed with gas chromatography mass spectrometry (GC-MS). The antioxidant and antibacterial activities were screened using 1,1diphenyl2picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and micro-dilution assays, respectively. The effects of the extract on the bacterial respiratory chain dehydrogenase, membrane integrity and permeability were analysed using iodonitrotetrazolium chloride, 260 absorbing materials and relative electrical conductivity assays. GC-MS spectrum revealed 26 compounds with N,N'-trimethyleneurea (10.56%), xanthine (8.57%) and 4-hexyl-1-(7-ethoxycarbonylheptyl)bicyclo[4.4.0]deca-2,5,7-triene (7.10%), being the major components. The extract also exhibited antioxidant activity with median concentration (IC) values of 0.65 mg/mL on DPPH and 0.052 mg/mL on ABTS. The extract exhibited minimum inhibitory concentration (MIC) values ranging from 0.07 to 1.13 mg/mL. The extract inhibited the bacterial growth by destructing the activity of the respiratory chain dehydrogenase, membrane integrity and permeability. Therefore, the leaf extract has the potential to serve as a source of antibacterial and antioxidant compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9968107 | PMC |
http://dx.doi.org/10.3390/plants12040869 | DOI Listing |
Biomed Res Int
December 2024
Department of Biochemistry & Chemistry, Sylhet Agricultural University, Sylhet, Bangladesh.
Emerging multidrug-resistant (MDR) strains are the main challenges to the progression of new drug discovery. To diminish infectious disease-causing pathogens, new antibiotics are required while the drying pipeline of potent antibiotics is adding to the severity. Plant secondary metabolites or phytochemicals including alkaloids, phenols, flavonoids, and terpenes have successfully demonstrated their inhibitory potential against the drug-resistant pathogens.
View Article and Find Full Text PDFFungal Genet Biol
December 2024
National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology-Fungi, MACS- Agharkar Research Institute, Gopal Ganesh Agharkar Road, Pune 411 004, Maharashtra, India. Electronic address:
The rapid decline of significant plant species due to deforestation and slow regrowth has endangered many trees that are crucial for producing life-saving medications. This dual crisis of conserving plant biodiversity while meeting pharmaceutical demands necessitates innovative solutions. Endophytic fungi, naturally occurring symbionts within plants, present an eco-friendly and economically viable alternative.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China. Electronic address:
The excessive utilization of antibiotics gives rise to the development of bacterial resistance, the deterioration of animal immune functions, the increase in mortality rates, and the undermining of human immunity. Therefore, there is an urgent necessity to explore new antimicrobial agents or alternatives to tackle bacterial resistance. We investigated tea tree oil (TTO), a pure natural plant essential oil extracted from Melaleuca leaves, which exerted efficient antibacterial activities.
View Article and Find Full Text PDFBiophys Chem
December 2024
Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.
Lipid-based nanocarriers provide versatile platforms for the encapsulation and delivery of many different bioactive compounds to improve the solubility, stability and therapeutic efficacy of bioactive phyto-compounds. In this study, liposomes were used to load leaf extract of Coffea Arabica, which is known to be rich beneficial substances such as alkaloids, flavonoids, etc. The aim of this work is to optimize the valorization of agricultural wastes containing natural antioxidants.
View Article and Find Full Text PDFComput Biol Med
December 2024
Computer Science and Information Sciences, Chongqing Normal University, Shapingba, Chongqing, 401331, China. Electronic address:
Leaf disease detection holds significant application value in the agricultural domain, as timely and accurate detection of crop leaf disease targets is crucial for improving crop yield and quality. To handle varying crop leaf disease target sizes, occlusion issues, and detection errors in complex environments, the YOLOv8 structure has been enhanced. Firstly, to tackle the issues of target diversity and loss of image features, this paper designs the GOCR-ELAN lightweight module to replace some of the C2f modules in the Backbone, thereby reducing the parameters in the model and enhancing the network's feature extraction capability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!