A panel of 114 genetically diverse barley lines were assessed in the greenhouse and field for resistance to the pathogen , the causal agent of barley leaf rust. Multi-pathotype tests revealed that 16.6% of the lines carried the all-stage resistance (ASR) gene , followed by (4.4%), (1.7%), (1.7%) or (1.7%). Five lines (4.4%) were postulated to carry the gene combinations , and . Three lines (2.6%) were postulated to carry based on seedling rust tests and genotyping with a marker linked closely to this gene. Based on greenhouse seedling tests and adult-plant field tests, 84 genotypes (73.7%) were identified as carrying APR, and genotyping with molecular markers linked closely to three known APR genes (, and ) revealed that 48 of the 84 genotypes (57.1%) likely carry novel (uncharacterized) sources of APR. Seven lines were found to carry known APR gene combinations (, and ), and these lines had higher levels of field resistance compared to those carrying each of these three APR genes singly. GWAS identified 12 putative QTLs; strongly associated markers located on chromosomes 1H, 2H, 3H, 5H and 7H. Of these, the QTL on chromosome 7H had the largest effect on resistance response to . Overall, these studies detected several potentially novel genomic regions associated with resistance. The findings provide useful information for breeders to support the utilization of these sources of resistance to diversify resistance to leaf rust in barley and increase resistance durability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963359PMC
http://dx.doi.org/10.3390/plants12040862DOI Listing

Publication Analysis

Top Keywords

leaf rust
12
resistance
9
field resistance
8
17% 17%
8
postulated carry
8
gene combinations
8
linked closely
8
three apr
8
apr genes
8
lines
6

Similar Publications

Global warming and extreme climate conditions caused by unsuitable temperature and humidity lead to coffee leaf rust () diseases in coffee plantations. Coffee leaf rust is a severe problem that reduces productivity. Currently, pesticide spraying is considered the most effective solution for mitigating coffee leaf rust.

View Article and Find Full Text PDF

Leaf rust, caused by Puccinia triticina (Pt), is a serious constraint to wheat production. Developing resistant varieties is the best approach to managing this disease. Wheat leaf rust resistance (Lr) genes have been classified into either all-stage resistance (ASR) or adult-plant resistance (APR).

View Article and Find Full Text PDF

Wheat ( spp.) is one of the most important cereal crops in the world. Several diseases affect wheat production and can cause 20-80% yield loss annually.

View Article and Find Full Text PDF

Pseudo-linkage or real-linkage of rust resistance genes in a wheat-Thinopyrum intermedium translocation line.

Theor Appl Genet

December 2024

Plant Breeding Institute, School of Life and Environmental Sciences, The University of Sydney, Cobbitty, NSW, 2570, Australia.

We analysed the chromosomal structures of two wheat-Thinopyrum intermedium addition lines Z4 and Z5 and resolved the linkage relationship between the leaf rust and stripe rust resistance genes in Z4. Wheat addition lines Z4 and Z5 carrying rust resistance genes from Thinopyrum intermedium (JJJJStSt, 2n = 6x = 42) together with three wheat lines involved in the production of these addition lines were analysed by rust response, 90K SNP genotyping, and molecular cytogenetic analysis. Seedling leaf rust (LR) responses to five diverse pathotypes indicated that the LR resistance gene(s) was located in translocation chromosome T3DS-3AS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!