Illumina RNA and SMRT Sequencing Reveals the Mechanism of Uptake and Transformation of Selenium Nanoparticles in Soybean Seedlings.

Plants (Basel)

School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China.

Published: February 2023

Selenium (Se) is an essential element for mammals, and its deficiency in the diet is a global problem. Agronomic biofortification through exogenous Se provides a valuable strategy to enhance human Se intake. Selenium nanoparticles (SeNPs) have been regarded to be higher bioavailability and less toxicity in comparison with selenite and selenate. Still, little has been known about the mechanism of their metabolism in plants. Soybean ( L.) can enrich Se, providing an ideal carrier for Se biofortification. In this study, soybean sprouts were treated with SeNPs, and a combination of next-generation sequencing (NGS) and single-molecule real-time (SMRT) sequencing was applied to clarify the underlying molecular mechanism of SeNPs metabolism. A total of 74,662 nonredundant transcripts were obtained, and 2109 transcription factors, 9687 alternative splice events, and 3309 long non-coding RNAs (lncRNAs) were predicted, respectively. KEGG enrichment analysis of the DEGs revealed that metabolic pathways, biosynthesis of secondary metabolites, and peroxisome were most enriched both in roots and leaves after exposure to SeNPs. A total of 117 transcripts were identified to be putatively involved in SeNPs transport and biotransformation in soybean. The top six hub genes and their closely coexpressed Se metabolism-related genes, such as (), (), and (), were screened by WGCNA and identified to play crucial roles in SeNPs accumulation and tolerance in soybean. Finally, a putative metabolism pathway of SeNPs in soybean was proposed. These findings have provided a theoretical foundation for future elucidation of the mechanism of SeNPs metabolism in plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9966555PMC
http://dx.doi.org/10.3390/plants12040789DOI Listing

Publication Analysis

Top Keywords

smrt sequencing
8
selenium nanoparticles
8
senps
8
metabolism plants
8
mechanism senps
8
senps metabolism
8
soybean
6
illumina rna
4
rna smrt
4
sequencing reveals
4

Similar Publications

As molecular research on hemp (Cannabis sativa L.) continues to advance, there is a growing need for the accumulation of more diverse genome data and more accurate genome assemblies. In this study, we report the three-way assembly data of a cannabidiol (CBD)-rich cannabis variety, 'Pink Pepper' cultivar using sequencing technology: PacBio Single Molecule Real-Time (SMRT) technology, Illumina sequencing technology, and Oxford Nanopore Technology (ONT).

View Article and Find Full Text PDF

Third generation sequencing transforming plant genome research: Current trends and challenges.

Gene

December 2024

Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam 781001, India. Electronic address:

In recent years, third-generation sequencing (TGS) technologies have transformed genomics and transcriptomics research, providing novel opportunities for significant discoveries. The long-read sequencing platforms, with their unique advantages over next-generation sequencing (NGS), including a definitive protocol, reduced operational time, and real-time sequencing, possess the potential to transform plant genomics. TGS optimizes and enhances the efficiency of data analysis by removing the necessity for time-consuming assembly tools.

View Article and Find Full Text PDF

Revealing long-range heterogeneous organization of nucleoproteins with N-methyladenine footprinting.

bioRxiv

December 2024

Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.

A major challenge in epigenetics is uncovering the dynamic distribution of nucleosomes and other DNA-binding proteins, which plays a crucial role in regulating cellular functions. Established approaches such as ATAC-seq, ChIP-seq, and CUT&RUN provide valuable insights but are limited by the ensemble nature of their data, masking the cellular and molecular heterogeneity that is often functionally significant. Recently, long-read sequencing technologies, particularly Single Molecule, Real-Time (SMRT/PacBio) sequencing, have introduced transformative capabilities, such as N-methyladenine (6mA) footprinting.

View Article and Find Full Text PDF

In southern China, α-thalassemia is the most prevalent hereditary monogenic disorder, and deletion variants are the predominant form. Conventional thalassemia diagnosis techniques are numerous, however they are all limited in their ability to detect rare deletions. Here, we discuss a family who sought genetic counseling during their fourth pregnancy after experiencing Hb Bart's hydrops fetalis in two of their previous pregnancies.

View Article and Find Full Text PDF

Hairy vetch ( Roth) and smooth vetch ( Roth var. ) are important cover crops and legume forage with great economic and ecological values. Due to the large and highly heterozygous genome, full-length transcriptome reconstruction is a cost-effective route to mining their genetic resources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!