AI Article Synopsis

  • Heavy metals are naturally occurring but can be quickly released into the environment by human activities, posing risks to plant life and human health.
  • Phytoremediation is a sustainable method that uses invasive plant species to absorb and detoxify heavy metals from contaminated soil, making it an effective option for soil remediation.
  • The review explores how understanding heavy metal uptake and resistance in these plants can enhance phytoremediation techniques, including methodologies involving biotechnology and genetic engineering.

Article Abstract

Heavy metals (HMs) normally occur in nature and are rapidly released into ecosystems by anthropogenic activities, leading to a series of threats to plant productivity as well as human health. Phytoremediation is a clean, eco-friendly, and cost-effective method for reducing soil toxicity, particularly in weedy plants (invasive plant species (IPS)). This method provides a favorable tool for HM hyperaccumulation using invasive plants. Improving the phytoremediation strategy requires a profound knowledge of HM uptake and translocation as well as the development of resistance or tolerance to HMs. This review describes a comprehensive mechanism of uptake and translocation of HMs and their subsequent detoxification with the IPS via phytoremediation. Additionally, the improvement of phytoremediation through advanced biotechnological strategies, including genetic engineering, nanoparticles, microorganisms, , and protein basis, is discussed. In summary, this appraisal will provide a new platform for the uptake, translocation, and detoxification of HMs via the phytoremediation process of the IPS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964337PMC
http://dx.doi.org/10.3390/plants12040725DOI Listing

Publication Analysis

Top Keywords

uptake translocation
12
heavy metals
8
invasive plant
8
plant species
8
phytoremediation
5
green approach
4
approach heavy
4
metals 'phytoremediation'
4
'phytoremediation' invasive
4
species mitigate
4

Similar Publications

Revitalizing Soybean Plants in Saline, Cd-Polluted Soil Using Si-NPs, Biochar, and PGPR.

Plants (Basel)

December 2024

Department of Agricultural Microbiology, Agriculture and Biology Research Institute, National Research Centre, 33 EI Buhouth St., Dokki, Cairo 12622, Egypt.

Excessive irrigation of saline-alkaline soils with Cd-contaminated wastewater has resulted in deterioration of both soil and plant quality. To an investigate this, a study was conducted to explore the effects of biochar (applied at 10 t ha), PGPRs ( (USDA 110) + at 1:1 ratio), and Si-NPs (25 mg L) on soybean plants grown in saline-alkali soil irrigated with wastewater. The results showed that the trio-combination of biochar with PGPRs, (as soil amendments) and Si-NPs (as foliar spraying), was more effective than individual or coupled applications in reducing Cd bioavailability in the soil, minimizing its absorption, translocation and bioconcentration in soybean tissues.

View Article and Find Full Text PDF

Preparation and Performance Study of Novel Foam Vegetation Concrete.

Materials (Basel)

December 2024

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China.

Vegetation concrete is one of the most widely used substrates in ecological slope protection, but its practical application often limits the growth and nutrient uptake of plant roots due to consolidation problems, which affects the effectiveness of slope protection. This paper proposed the use of a plant protein foaming agent as a porous modifier to create a porous, lightweight treatment for vegetation concrete. Physical performance tests, direct shear tests, plant growth tests, and scanning electron microscopy experiments were conducted to compare and analyze the physical, mechanical, microscopic characteristics, and phyto-capabilities of differently treated vegetation concrete.

View Article and Find Full Text PDF

SLC7A11 Expression Is Up-Regulated in HPV- and Tobacco-Associated Lung Cancer.

Int J Mol Sci

December 2024

Laboratorio de Oncovirología, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile.

High-risk human papillomaviruses (HR-HPVs) are the etiological agents of cervical, anogenital, and a subset of oropharyngeal cancers. In addition, HR-HPVs have been detected in lung carcinomas worldwide, even though the role of these viruses in this type of cancer is not fully understood. This study evaluated the presence of HPV in a cohort of 204 lung cancer cases by multiplex polymerase chain reaction (PCR)-Luminex.

View Article and Find Full Text PDF

Adipose tissue in vivo is physiologically exposed to compound mechanical loading due to bodyweight bearing, posture, and motion. The capability of adipocytes to sense and respond to mechanical loading milieus to influence metabolic functions may provide a new insight into obesity and metabolic diseases such as type 2 diabetes (T2D). Here, we evidenced physiological mechanical loading control of adipocyte insulin signaling cascades.

View Article and Find Full Text PDF

Background/objectives: Monocarboxylate transporters (MCTs) comprise 14 known isoforms, with MCT1 being particularly important for lactate transport. Variations in lactate metabolism capacity and aerobic performance are associated with the T1470A polymorphism in . We aimed to investigate the frequency of the T1470A polymorphism and compare relevant physiological parameters among long-distance runners, wherein these parameters are fundamental to athletic performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!