The blood-brain barrier (BBB) is one of the most selective endothelial barriers that protect the brain and maintains homeostasis in neural microenvironments. This barrier restricts the passage of molecules into the brain, except for gaseous or extremely small hydrophobic molecules. Thus, the BBB hinders the delivery of drugs with large molecular weights for the treatment of brain cancers. Various methods have been used to deliver drugs to the brain by circumventing the BBB; however, they have limitations such as drug diversity and low delivery efficiency. To overcome this challenge, microbubbles (MBs)-based drug delivery systems have garnered a lot of interest in recent years. MBs are widely used as contrast agents and are recently being researched as a vehicle for delivering drugs, proteins, and gene complexes. The MBs are 1-10 μm in size and consist of a gas core and an organic shell, which cause physical changes, such as bubble expansion, contraction, vibration, and collapse, in response to ultrasound. The physical changes in the MBs and the resulting energy lead to biological changes in the BBB and cause the drug to penetrate it, thus enhancing the therapeutic effect. Particularly, this review describes a state-of-the-art strategy for fabricating MB-based delivery platforms and their use with ultrasound in brain cancer therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959315 | PMC |
http://dx.doi.org/10.3390/pharmaceutics15020698 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Surgery, School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands.
Sulfatides or 3-O-sulfogalactosylceramide are negatively charged sulfated glycosphingolipids abundant in the brain and kidneys and play crucial roles in nerve impulse conduction and urinary pH regulation. Sulfatides are present in the liver, specifically in the biliary tract. Sulfatides are self-lipid antigens presented by cholangiocytes to activate cluster of differentiation 1d (CD1d)-restricted type II natural killer T (NKT) cells.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Radiology, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, 313000 Huzhou, Zhejiang, China.
Background: Glioma is the most common malignancy in the central nervous system. Even with optimal therapies, glioblastoma (the most aggressive form of glioma) is incurable, with only 26.5% of patients having a 2-year survival rate.
View Article and Find Full Text PDFViruses
January 2025
Surgical Neurology Branch, NINDS, NIH 10 Center Drive, Bethesda, MD 20892, USA.
Glioblastoma multiforme (GBM) is a devastating, aggressive primary brain tumor with poor patient outcomes and a five-year survival of less than 10%. Significant limitations to effective GBM treatment include poor drug delivery across the blood-brain barrier, drug resistance, and complex genetic tumor alterations. Gene therapy uses a mechanism different from other GBM therapies to reduce tumor growth and enhance antitumor immunity.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China.
Aromatase plays a crucial role in the conversion of androgens to oestrogens and is often overexpressed in hormone-dependent tumours, particularly breast cancer. [18F]BIBD-071, which has excellent binding affinity for aromatase and good pharmacokinetics, has potential for the diagnosis and treatment of aromatase-related diseases. The MCF-7 cell line, which is hormone receptor-positive (HR+), was used in the assessment of the novel [18F]-labelled radiotracer [18F]BIBD-071 via positron emission tomography (PET) imaging of an HR+ breast cancer xenograft model.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Amsterdam UMC location Vrije Universiteit Amsterdam, Medical Oncology, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
Oncolytic adenoviruses derived from human serotype 5 (Ad5) are being developed to treat cancer. Treatment efficacy could be affected by pre-existing or induced neutralizing antibodies (NAbs), in particular in repeat administration strategies. Several oncolytic adenoviruses that are currently in clinical development have modified fiber proteins to increase their infectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!