Polymeric Systems for the Controlled Release of Flavonoids.

Pharmaceutics

BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, 56124 Pisa, Italy.

Published: February 2023

Flavonoids are natural compounds that are attracting great interest in the biomedical field thanks to the wide spectrum of their biological properties. Their employment as anticancer, anti-inflammatory, and antidiabetic drugs, as well as for many other pharmacological applications, is extensively investigated. One of the most successful ways to increase their therapeutic efficacy is to encapsulate them into a polymeric matrix in order to control their concentration in the physiological fluids for a prolonged time. The aim of this article is to provide an updated overview of scientific literature on the polymeric systems developed so far for the controlled release of flavonoids. The different classes of flavonoids are described together with the polymers most commonly employed for drug delivery applications. Representative drug delivery systems are discussed, highlighting the most common techniques for their preparation. The flavonoids investigated for polymer system encapsulation are then presented with their main source of extraction and biological properties. Relevant literature on their employment in this context is reviewed in relationship to the targeted pharmacological and biomedical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964149PMC
http://dx.doi.org/10.3390/pharmaceutics15020628DOI Listing

Publication Analysis

Top Keywords

polymeric systems
8
controlled release
8
release flavonoids
8
biological properties
8
drug delivery
8
flavonoids
5
systems controlled
4
flavonoids flavonoids
4
flavonoids natural
4
natural compounds
4

Similar Publications

Polymer-based photosensitizers have found various applications in photodynamic therapy (PDT). However, the absence of targeting ability commonly results in a substantial reduction in photosensitizer accumulation at the tumor site, significantly limiting the therapeutic efficacy of the system. In addition, the development of biodegradable polymeric photosensitizers is of critical importance for biological applications.

View Article and Find Full Text PDF

Antibacterial carbon dots.

Mater Today Bio

February 2025

Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China.

Bacterial infections significantly threaten human health, leading to severe diseases and complications across multiple systems and organs. Antibiotics remain the primary treatment strategy for these infections. However, the growing resistance of bacteria to conventional antibiotics underscores the urgent need for safe and effective alternative treatments.

View Article and Find Full Text PDF

We report a series of dibenzyl isophthalates (DBIs) as novel hosts for room-temperature phosphorescence (RTP) host-guest systems, achieving RTP quantum yields (QY) of up to 77% or lifetimes of up to 21.0 s with the guest coronene- . Furthermore, a 4,4'-Br substituted DBI was used to form host-guest RTP systems with 15 different aromatic guest molecules, to tune the phosphorescence emission color from blue to red and to demonstrate the versatility of the host.

View Article and Find Full Text PDF

Amplification-free detection of using CRISPR-Cas12a and graphene field-effect transistors.

Nanoscale

January 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.

Current molecular tests for tuberculosis (TB), such as whole genome sequencing and Xpert /rifampicin resistance assay, exhibit limited sensitivity and necessitate the pre-amplification step of target DNA. This limitation greatly increases detection time and poses an increased risk of infection. Here, we present a graphene field-effect transistor (GFET) based on the CRISPR/Cas system for detecting .

View Article and Find Full Text PDF

Due to the blood-brain barrier (BBB) and issues with oral and other traditional routes of administration, psychiatric disorders present significant challenges in getting therapeutics into the brain. The nose-to-brain pathway, also known as intranasal delivery, has shown promise in overcoming these barriers since it targets the brain directly and bypasses the BBB. This review explores nanocarriers' potential for intranasal delivery of therapeutics in the treatment of psychiatric disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!