Permeability across cellular membranes is a key factor that influences absorption and distribution. Before absorption, many drugs must pass through the mucus barrier that covers all the wet surfaces of the human body. Cell-free in vitro tools currently used to evaluate permeability fail to effectively model the complexity of mucosal barriers. Here, we present an in vitro mucosal platform as a possible strategy for assessing permeability in a high-throughput setup. The PermeaPad 96-well plate was used as a permeability system and further coupled to a pathological, tridimensional mucus model. The physicochemical determinants predicting passive diffusion were determined by combining experimental and computational approaches. Drug solubility, size, and shape were found to be the critical properties governing permeability, while the charge of the drug was found to be influential on the interaction with mucus. Overall, the proposed mucosal platform could be a promising in vitro tool to model the complexity of mucosal tissues and could therefore be adopted for drug-permeability profiling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9966667 | PMC |
http://dx.doi.org/10.3390/pharmaceutics15020380 | DOI Listing |
Clin Implant Dent Relat Res
February 2025
Department of Oral Surgery and Implantology, Goethe University, Frankfurt am Main, Germany.
Objectives: This preclinical ex vivo porcine study aimed to evaluate the effects of two flap advancement techniques and periosteal suturing (PS) on graft material displacement during primary wound closure in guided bone regeneration (GBR). Secondary objectives included assessing flap advancement and the impact of soft tissue characteristics on graft displacement.
Materials And Methods: Standardized two-walled horizontal bone defects were created in second premolar sites of pig hemimandibles.
Cardiovasc Res
January 2025
Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
Aims: The gastrointestinal (GI) tract is composed of distinct sub-regions, which exhibit segment-specific differences in microbial colonization and (patho)physiological characteristics. Gut microbes can be collectively considered as an active endocrine organ. Microbes produce metabolites, which can be taken up by the host and can actively communicate with the immune cells in the gut lamina propria with consequences for cardiovascular health.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Engineering Medicine, Beihang University, Beijing, 100191, People's Republic of China.
Background: Lichen sclerosus (LS) is a chronic inflammatory disease affecting skin and mucosal tissues, particularly external genitalia, with a risk of cancer. Its etiology is unknown, possibly involving immune dysregulation and inflammation.
Methods: Study used DNA methylation (DNAme) and single-cell RNA sequencing (scRNA-seq) to compare LS with normal skin.
Gene
January 2025
Department of Pediatrics, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China. Electronic address:
Background: Methyltransferase-like 3 (METTL3) regulates numerous biological processes and diverse cancers.
Objective: To explore the frequency distribution of METTL3 rs1061026, rs1139130, and rs1263801 polymorphisms, and their potential impacts on clinical outcomes and chemotherapy-induced toxicities in a cohort of Chinese pediatric patients diagnosed with primary brain tumors (PBTs).
Methods: Genotyping for three investigated SNPs was performed in 107 pediatric patients with PBTs using the Sequenom MassARRAY iPLEX platform.
Cells
January 2025
Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy.
Microplastics (MPs) in fish can cross the intestinal barrier and are often bioaccumulated in several tissues, causing adverse effects. While the impacts of MPs on fish are well documented, the mechanisms of their cellular internalization remain unclear. A rainbow-trout () intestinal platform, comprising proximal and distal intestinal epithelial cells cultured on an Alvetex scaffold, was exposed to 50 mg/L of MPs (size 1-5 µm) for 2, 4, and 6 h.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!