Chronic wound infections with antibiotic-resistant bacteria have become a significant problem for modern healthcare systems since they are often associated with high costs and require profound topical wound management. Successful wound healing is achieved by reducing the bacterial load of the wound and providing an environment that enhances cell growth. In this context, nanofibers show remarkable success because their structure offers a promising drug delivery platform that can mimic the native extracellular matrix and accelerate cell proliferation. In our study, single-needle electrospinning, a versatile and cost-efficient technique, was used to shape polymers into an applicable and homogeneous fleece capable of a photothermally triggered drug release. It was combined with antimicrobial photodynamic therapy, a promising procedure against resistant bacteria. Therefore, poly(d,l-lactide) nanofibers loaded with curcumin and indocyanine green (ICG) were produced for local antimicrobial treatment. The mesh had a homogeneous structure, and the nanofibers showed a smooth surface. Recordings with a thermal camera showed that near-infrared light irradiation of ICG increased the temperature (>44 °C) in the surrounding medium. Release studies confirmed more than 29% enhanced curcumin release triggered by elevated temperature. The antimicrobial activity was tested against the gram-positive strain subsp. and the gram-negative strain DH5 alpha. The nanofibers loaded with both photosensitizers and irradiated with both wavelengths reduced the bacterial viability (~4.4 log, 99.996%) significantly more than the nanofibers loaded with only one photosensitizer (<1.7 log, 97.828%) or irradiated with only one wavelength (<2.0 log, 98.952%). In addition, our formulation efficiently eradicated persistent adhered bacteria by >4.3 log (99.995%), which was also confirmed visually. Finally, the produced nanofibers showed good biocompatibility, proven by the cellular viability of mouse fibroblasts (L929). The data demonstrate that we have developed a new economic nanofiber formulation, which offers a triggered drug release, excellent antimicrobial properties, and good biocompatibility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963466PMC
http://dx.doi.org/10.3390/pharmaceutics15020327DOI Listing

Publication Analysis

Top Keywords

nanofibers loaded
16
drug release
8
polydl-lactide nanofibers
8
indocyanine green
8
antimicrobial photodynamic
8
photodynamic therapy
8
nanofibers
6
photothermally controlled
4
controlled drug
4
release
4

Similar Publications

The limited transport of oxygen at the solid-liquid interface and the poor charge separation efficiency of single catalyst significantly impedes the generation of reactive oxygen species (ROS), thereby weakening the application potential of photocatalytic technology in water pollution control. Herein, a hollow porous photocatalytic aerogel sphere (calcium alginate/cellulose nanofibers (CA/CNF)) loaded BiOBr/TiC, combining a favourable mass transfer structure with effective catalytic centers was firstly presented. The floatability and hollow pore structure facilitated rapid O transfer via a triphase interface, thereby promoting the generation of ROS.

View Article and Find Full Text PDF

Magnolol (MG) and honokiol (HK) are bioactive compounds extracted from and trees with significant pharmacological properties, including antioxidant and antibacterial activity. However, their poor water solubility and low bioavailability limit the therapeutic potential. To address these limitations, this study aims to develop MG and HK formulations by co-electrospinning using custom-synthesized β-cyclodextrin-oligolactide (β-CDLA) derivatives.

View Article and Find Full Text PDF

Objectives: This study aimed to synthesize polylactic acid (PLA) nanofibrillar scaffolds loaded with ibuprofen (IBU) using electrospinning (ES) and air-jet spinning (AJS). The scaffolds were evaluated for their physicochemical properties, drug release profiles, and biocompatibility to assess their potential for local analgesic applications.

Methods: Solutions of 10% (/) PLA combined with IBU at concentrations of 10%, 20%, and 30% were processed into nanofibrillar membranes using ES and AJS.

View Article and Find Full Text PDF

Spironolactone (SP), an aldosterone inhibitor widely used to treat androgen-dependent disorders such as acne, hirsutism, and alopecia, has demonstrated therapeutic potential in both oral and topical formulations. However, SP's low solubility and poor bioavailability in conventional formulations have driven the development of novel nanocarriers to enhance its efficacy. This review systematically examines recent advancements in SP-loaded nanocarriers, including lipid nanoparticles (LNPs), vesicular nanoparticles (VNPs), polymeric nanoparticles (PNPs), and nanofibers (NFs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!