Small Extracellular Vesicles as a New Class of Medicines.

Pharmaceutics

Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.

Published: January 2023

AI Article Synopsis

  • Extracellular vesicles (EVs) are tiny lipid-bound particles released by cells, with small EVs (sEVs) being especially interesting due to their roles in cell communication and signaling.* -
  • sEVs have advantages for drug delivery because they are biocompatible, stable, and capable of transporting complex molecules that traditional drugs cannot.* -
  • Despite their potential, there are challenges in using sEVs as therapies, and this review discusses various sEV therapeutic types, future improvements, and strategies for large-scale production.*

Article Abstract

Extracellular vesicles (EVs) are nanovesicles that are naturally released from cells in a lipid bilayer-bound form. A subset population with a size of 200 nm, small EVs (sEVs), is enticing in many ways. Initially perceived as mere waste receptacles, sEVs have revealed other biological functions, such as cell-to-cell signal transduction and communication. Besides their notable biological functions, sEVs have profound advantages as future drug modalities: (i) excellent biocompatibility, (ii) high stability, and (iii) the potential to carry undruggable macromolecules as cargo. Indeed, many biopharmaceutical companies are utilizing sEVs, not only as diagnostic biomarkers but as therapeutic drugs. However, as all inchoate fields are challenging, there are limitations and hindrances in the clinical translation of sEV therapeutics. In this review, we summarize different types of sEV therapeutics, future improvements, and current strategies in large-scale production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961868PMC
http://dx.doi.org/10.3390/pharmaceutics15020325DOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
8
biological functions
8
sev therapeutics
8
small extracellular
4
vesicles class
4
class medicines
4
medicines extracellular
4
vesicles evs
4
evs nanovesicles
4
nanovesicles naturally
4

Similar Publications

Diabetic foot ulcer (DFU) is a common but devastating complication of diabetes mellitus and might ultimately lead to amputation. Elucidating the regulatory mechanism of wound healing in DFU is quite important for developing DFU management strategies. Here, we show, mecenchymal stem cell (MSC)-derived exosomes promoted the proliferation, migration and angiogenesis of high glucose-treated endothelial cells and reduced cell apoptosis.

View Article and Find Full Text PDF

Advances in the combination of stem cell exosomes with medical devices-the new direction for combination products.

Chin J Nat Med

December 2024

State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China. Electronic address:

Exosomes (exos), nanoscale extracellular vesicles, play a critical role in tissue development and function. Stem cell-derived exos, containing various tissue repair components, show promise as natural therapeutic agents in disease treatment and regenerative medicine. However, challenges persist in their application, particularly in targeted delivery and controlled release, which are crucial for enhancing their biological efficacy.

View Article and Find Full Text PDF

Exosomes, their sources, and possible uses in cancer therapy in the era of personalized medicine.

J Cancer Res Clin Oncol

December 2024

Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia.

Despite significant advances in immunotherapy, its efficacy in solid tumors remains limited. Exosomes, a primary type of extracellular vesicles, can transport diverse intracellular molecules to nearby or distant cells and organs, facilitating numerous biological functions. Research has shown that exosomes have the dual ability to both activate and suppress the immune system.

View Article and Find Full Text PDF

Colorectal cancer (CRC) ranks as the third most common cancer worldwide and remains a major cause of cancer-related deaths, necessitating the development of innovative therapeutic approaches beyond conventional treatment modalities. Conventional therapies, such as radiation, chemotherapy, and surgery, are hindered by challenges like imprecise targeting, substantial toxicity, and the development of resistance. Exosome-driven nano-immunotherapy has emerged as a groundbreaking approach that leverages the natural properties of exosomes-cell-derived vesicles known for their role in intercellular communication-to deliver therapeutic agents with high precision and specificity.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are important mediators of intercellular communication in the tumour microenvironment. The cytokine transforming growth factor-β (TGF-β) facilitates cancer progression via EVs secreted by cancer cells, which act on recipient cells in the tumour microenvironment. However, the mechanisms of how TGF-β affects cancer cell EV release and composition are incompletely understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!