Despite extensive work on both insect disease and plant reproduction, there is little research on the intersection of the two. Insect-infecting pathogens could disrupt the pollination process by affecting pollinator population density or traits. Pathogens may also infect insect herbivores and change herbivory, potentially altering resource allocation to plant reproduction. We conducted a meta-analysis to (1) summarize the literature on the effects of pathogens on insect pollinators and herbivores and (2) quantify the extent to which pathogens affect insect traits, with potential repercussions for plant reproduction. We found 39 articles that fit our criteria for inclusion, extracting 218 measures of insect traits for 21 different insect species exposed to 25 different pathogens. We detected a negative effect of pathogen exposure on insect traits, which varied by host function: pathogens had a significant negative effect on insects that were herbivores or carried multiple functions but not on insects that solely functioned as pollinators. Particular pathogen types were heavily studied in certain insect orders, with 7 of 11 viral pathogen studies conducted in Lepidoptera and 5 of 9 fungal pathogen studies conducted in Hymenoptera. Our results suggest that most studies have focused on a small set of host-pathogen pairs. To understand the implications for plant reproduction, future work is needed to directly measure the effects of pathogens on pollinator effectiveness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958737 | PMC |
http://dx.doi.org/10.3390/pathogens12020347 | DOI Listing |
J Econ Entomol
January 2025
Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, P.R. China.
The citrus pest Cacopsylla citrisuga (Yang & Li), a vector for Citrus Huanglongbing (HLB), exhibits distinct sensitivity to temperature variations. This study utilized an age-stage, 2-sex life table to evaluate the development and reproduction of C. citrisuga across 5 temperatures (17, 20, 25, 28, and 31 °C).
View Article and Find Full Text PDFPlant Reprod
January 2025
Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street, Boulder, CO, 80309, USA.
Self-incompatibility decays with age in plants of Physalis acutifolia, and plants that have transitioned to selfing produce fewer seeds but with comparable viability. Self-compatibility in this system is closely related to flower size, which is in turn dependent on the direction of the cross, suggesting parental effects on both morphology and compatibility. The sharpleaf groundcherry, Physalis acutifolia, is polymorphic for self-compatibility, with naturally occurring self-incompatible (SI) and self-compatible (SC) populations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
The broader use of botanical pesticides has been limited by shorter residual activity on plants, slower onset of action, and higher costs compared with conventional pesticides. These challenges could be overcome by the development of simple, cost-effective, and long-lasting preventive nanocomposites for botanical pesticides. In this study, we successfully developed a low-cost ethyl cellulose (EC)-based delivery system for the botanical pesticide osthole (OST), designed to provide extended preventive protection against infestations.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Chinese Academy of Agricultural Sciences, State Key Laboratory of Efficient Utilization of Arid and Semiarid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Beijing, China.
Mowing is a primary practice in temperate meadows, which are severely degraded due to frequent mowing, overgrazing, and other factors, necessitating restoration and sustainable management. The natural recovery of these grasslands hinges on their germinable soil seed banks, which form the basis for future productivity. Thus, germinable soil seed banks are critical for restoring overexploited meadows.
View Article and Find Full Text PDFFront Plant Sci
January 2025
College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.
The formation of the female germline is the fundamental process in most flowering plants' sexual reproduction. In , only one somatic cell obtains the female germline fate, and this process is regulated by different pathways. Megaspore mother cell (MMC) is the first female germline, and understanding MMC development is essential for comprehending the complex mechanisms of plant reproduction processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!