Interest in host epigenetic changes during apicomplexan infections increased in the last decade, mainly due to the emergence of new therapies directed to these alterations. This review aims to carry out a bibliometric analysis of the publications related to host epigenetic changes during apicomplexan infections and to summarize the main studied pathways in this context, pointing out those that represent putative drug targets. We used four databases for the article search. After screening, 116 studies were included. The bibliometric analysis revealed that the USA and China had the highest number of relevant publications. The evaluation of the selected studies revealed that was considered in most of the studies, non-coding RNA was the most frequently reported epigenetic event, and host defense was the most explored pathway. These findings were reinforced by an analysis of the co-occurrence of keywords. Even though we present putative targets for repurposing epidrugs and ncRNA-based drugs in apicomplexan infections, we understand that more detailed knowledge of the hosts' epigenetic pathways is still needed before establishing a definitive drug target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963874 | PMC |
http://dx.doi.org/10.3390/pathogens12020299 | DOI Listing |
Parasitol Res
January 2025
Department of Biology, Faculty of Science, Marmara University, Goztepe, 34722, Istanbul, Türkiye.
Babesia bigemina is an apicomplexan parasite responsible for causing "Texas fever" in bovines. Current treatments for bovine babesiosis are hindered by several limitations, including toxicity, insufficient efficacy in eliminating the parasite, and the potential for resistance development. A promising approach to overcome these challenges is the identification of compounds that specifically target essential metabolic pathways unique to the parasite.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biochemistry and Molecular Biology, Frederick P. Whiddon College of Medicine, Mobile, AL 36688, USA.
An intracellular protozoan, the Apicomplexan parasite () infects nucleated cells, in which it triggers the formation of a specialized membrane-confined cytoplasmic vacuole, named the parasitophorous vacuole (PV). One of the most prominent events in the parasite's intracellular life is the congregation of the host cell mitochondria around the PV. However, the significance of this event has remained largely unsolved since the parasite itself possesses a functional mitochondrion, which is essential for its replication.
View Article and Find Full Text PDFJFMS Open Rep
January 2025
NEIKER-BRTA (Instituto Vasco de Investigación y Desarrollo Agrario - Basque Research and Technology Alliance), Derio, Bizkaia, Spain.
Case Summary: is a globally distributed apicomplexan protozoan infecting all warm-blooded animals. Cats are the definitive host, susceptible to clinical disease. In Spain, studies have shown the widespread presence of IgG antibodies in cats but there are no published data on clinical toxoplasmosis in cats from Spain.
View Article and Find Full Text PDFPrev Vet Med
December 2024
Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano Emilia, BO 40064, Italy. Electronic address:
Bovine besnoitiosis, a disease caused by the tissue cyst-forming apicomplexan Besnoitia besnoiti, is re-emerging in Europe, leading to significant impairment of health and production, as well as economic losses. The early detection of the disease is of the utmost importance for the implementation of effective control measures, yet this is a challenge due to the lack of specific early clinical signs. The objectives of our study were 1) to estimate the diagnostic accuracy of three tests to detect B.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany.
Bovine besnoitiosis is a re-emerging cattle disease caused by the apicomplexan parasite , which severely affects individual animal welfare and profitability in cattle industry. We recently showed that tachyzoite exposure to bovine polymorphonuclear neutrophils (PMN) effectively triggers neutrophil extracellular trap (NET) formation, leading to parasite immobilization hampering host cell infection. So far, the triggers of this defense mechanism remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!