Persistent infection with is an important factor in gastric diseases. The vacA and cagA virulence factors of contribute to the development of these diseases. Triple therapy containing clarithromycin has been used to eradicate this infection. Unfortunately, resistance to this antibiotic is the primary cause of treatment failure. This study aimed to determine the prevalence of clarithromycin resistance-associated mutations and to assess the relationship between virulence factors and Mexican patients infected with . The and genotypes were determined by multiplex PCR. Furthermore, a qPCR was used to identify mutations of the 23S rRNA gene. This study reported a prevalence of 84.3% of among patients with gastric diseases, and the genotype was the most frequent (44.8%) in antrum and corpus. Analysis of the 23S rRNA gene revealed a 19.8% prevalence of clarithromycin resistance-associated mutations. The most prevalent mutations were A2143G (56%) and A2142C (25%). A significant association () between the A2142G and the genotype was detected. In conclusion, we report a high prevalence (>15%) of clarithromycin resistance-associated mutations, and we found an association between the genotypes of virulence factors and a mutation in the 23S rRNA gene.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959081 | PMC |
http://dx.doi.org/10.3390/pathogens12020234 | DOI Listing |
J Bacteriol
January 2025
Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA.
Protein secretion is an essential cell process in bacteria, required for cell envelope biogenesis, export of virulence factors, and acquisition of nutrients, among other important functions. In the Sec secretion pathway, signal peptide-bearing precursors are recognized by the SecA ATPase and pushed across the membrane through a translocon channel made of the proteins SecY, SecE, and SecG. The Sec pathway has been extensively studied in the model organism , but the Sec pathways of other bacteria such as the human pathogen differ in important ways from this model.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
Unlabelled: Type IV pili (T4P) are important virulence factors that allow bacteria to adhere to and rapidly colonize their hosts. T4P are primarily composed of major pilins that undergo cycles of extension and retraction and minor pilins that initiate pilus assembly. Bacteriophages use T4P as receptors and exploit pilus dynamics to infect their hosts.
View Article and Find Full Text PDFFront Antibiot
September 2024
Institute of Infection & Immunity, St George's, University of London, London, United Kingdom.
Neonatal sepsis causes substantial morbidity and mortality, the burden of which is carried by low-income countries (LICs). The emergence of multidrug-resistant pathogens in vulnerable neonatal populations poses an urgent threat to infant survival. spp.
View Article and Find Full Text PDFFront Antibiot
April 2024
Transmission, Reservoir and Diversity of Pathogens Unit, Institut Pasteur, Les Abymes, France.
Introduction: This study aimed to understand the origin and to explain the maintenance of extended-spectrum β-lactamase (ESBL) isolated from food-producing animals in a third-generation cephalosporin (3GC)-free farm.
Methods: Culture and molecular approaches were used to test molecules other than 3GC such as antibiotics (tetracycline and oxytetracycline), antiparasitics (ivermectin, flumethrin, fenbendazol, and amitraz), heavy metal [arsenic, HNO, aluminum, HNO, cadmium (CdSO), zinc (ZnCl), copper (CuSO), iron (FeCl), and aluminum (AlSO)], and antioxidant (butylated hydroxytoluene) as sources of selective pressure. Whole-genome sequencing using short read (Illumina™) and long read (Nanopore™) technologies was performed on 34 genomes.
J Zhejiang Univ Sci B
October 2024
Department of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
Adenosine triphosphate (ATP)-binding cassette (ABC) transporter systems are divided into importers and exporters that facilitate the movement of diverse substrate molecules across the lipid bilayer, against the concentration gradient. These transporters comprise two highly conserved nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Unlike ABC exporters, prokaryotic ABC importers require an additional substrate-binding protein (SBP) as a recognition site for specific substrate translocation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!