Food-derived bioactive peptides (BAPs) obtained from edible insect-protein hold multiple activities promising the potential to target complex pathological mechanisms responsible for chronic health conditions such as hypertension development. In this study, enzymatic protein hydrolysates from non-mulberry edible silkworm (Muga) and (Eri) pupae, specifically Alcalase ( and Papain () hydrolysates obtained after 60 and 240 min, exhibited the highest ACE-inhibitory and antioxidant properties. The hydrolysates' fractions (<3, 3-10 and >10 kDa), specifically Alc_M60min_F3 (≤3 kDa) and Pap_E240min_F3 (≤3 kDa), showed the highest antioxidant and ACE-inhibitory activities, respectively. Further RP-HPLC purified sub-fractions F4 and F6 showed the highest ACE inhibition as well as potent anti-oxinflammatory activities in lipopolysaccharide (LPS)-treated endothelial cells. Indeed, F4 and F6 ACE-inhibitory peptide fractions were effective in preventing p65 nuclear translocation after 3 h of LPS stimulation along with the inhibition of p38 MAPK phosphorylation in HUVEC cells. In addition, pretreatment with F4 and F6 ACE-inhibitory peptide fractions significantly prevented the LPS-induced upregulation of COX-2 expression and IL-1β secretion, while the expression of NRF2 (nuclear factor erythroid 2-related factor 2)-regulated enzymes such as HO-1 and NQO1 was induced by both peptide fractions. The derived peptides from edible pupae protein hydrolysates have potentialities to be explored as nutritional approaches against hypertension and related cardiovascular diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964498PMC
http://dx.doi.org/10.3390/nu15041035DOI Listing

Publication Analysis

Top Keywords

protein hydrolysates
12
peptide fractions
12
≤3 kda
8
ace-inhibitory peptide
8
ace-inhibitory
5
evaluation anti-oxinflammatory
4
anti-oxinflammatory ace-inhibitory
4
ace-inhibitory properties
4
properties protein
4
hydrolysates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!