Background: Dietary fibers are subjected to saccharolytic fermentation by the gut microbiota, leading to the production of short chain fatty acids (SCFAs). SCFAs act as signaling molecules to different cells in the human body including skeletal muscle cells. The ability of SCFAs to induce multiple signaling pathways, involving nuclear erythroid 2-related factor 2 (Nrf2), may contribute to the redox balance, and thereby may be involved in glucose homeostasis. The aim of this study is to investigate whether SCFAs increase glucose uptake by upregulating the endogenous antioxidant glutathione (GSH) in C2C12 myotubes.
Methods: C2C12 myotubes were exposed to 1, 5, or 20 mM of single (acetate, propionate, or butyrate) or mixtures of SCFAs for 24 h. Cytotoxicity, glucose uptake, and intracellular GSH levels were measured.
Results: 20 mM of mixture but not separate SCFAs induced cytotoxicity. Exposure to a mixture of SCFAs at 5 mM increased glucose uptake in myotubes, while 20 mM of propionate, butyrate, and mixtures decreased glucose uptake. Exposure to single SCFAs increased GSH levels in myotubes; however, SCFAs did not prevent the menadione-induced decrease in glucose uptake in myotubes.
Conclusions: The effect of SCFAs on modulating glucose uptake in myotubes is not associated with the effect on endogenous GSH levels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967986 | PMC |
http://dx.doi.org/10.3390/nu15040946 | DOI Listing |
Scientifica (Cairo)
January 2025
Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 1128610, Japan.
Although glucosamine (GlcN) exhibits antitumor effects, its mechanism of action remains controversial. Additionally, its impact on hepatocellular carcinoma (HCC) is not well understood. This study aimed to investigate the antitumor effects of GlcN and its underlying mechanism in a mouse HCC cell line, Hepa1-6.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310000, PR China.
Background: Ferroptosis plays an important role in the development of diabetic nephropathy (DN). However, its specific regulatory mechanisms remain unclear.
Methods: MPC5 cells were cultured in high glucose (HG) medium to stimulate the HG environment in vitro.
Nat Metab
January 2025
CECAD Excellence Center, University of Cologne, Cologne, Germany.
Dysfunctions in autophagy, a cellular mechanism for breaking down components within lysosomes, often lead to neurodegeneration. The specific mechanisms underlying neuronal vulnerability due to autophagy dysfunction remain elusive. Here we show that autophagy contributes to cerebellar Purkinje cell (PC) survival by safeguarding their glycolytic activity.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA, USA.
Exogenous glucose oxidation is reduced 55% during aerobic exercise after three days of complete starvation. Whether energy deficits more commonly experienced by athletes and military personnel similarly affect exogenous glucose oxidation and what impact this has on physical performance remains undetermined. This randomized, longitudinal parallel study aimed to assess the effects of varying magnitudes of energy deficit (DEF) on exogenous glucoseoxidation and physical performance compared to energy balance (BAL).
View Article and Find Full Text PDFBrain
January 2025
U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Neuropresage Team; INSERM, University of Caen Normandy; GIP Cyceron, 14000 Caen, France.
Curing Alzheimer's disease remains hampered by an incomplete understanding of its pathophysiology and progression. Exploring dysfunction in medial temporal lobe networks, particularly the anterior-temporal (AT) and posterior-medial (PM) systems, may provide key insights, as these networks exhibit functional connectivity alterations along the entire Alzheimer's continuum, potentially influencing disease propagation. However, the specific changes in each network and their clinical relevance across stages are not yet fully understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!