Insulin is the main metabolic regulator of fuel molecules in the diet, such as carbohydrates, lipids, and proteins. It does so by facilitating glucose influx from the circulation into the liver, adipose tissue, and skeletal myocytes. The outcome of which is subjected to glycogenesis in skeletal muscle and lipogenesis in adipose tissue, as well as in the liver. Therefore, insulin has an anabolic action while, on the contrary, hypoinsulinemia promotes the reverse process. Protein breakdown in myocytes is also encountered during the late stages of diabetes mellitus. The balance of the blood glucose level in physiological conditions is maintained by virtue of the interactive functions of insulin and glucagon. In insulin resistance (IR), the balance is disturbed because glucose transporters (GLUTs) of cell membranes fail to respond to this peptide hormone, meaning that glucose molecules cannot be internalized into the cells, the consequence of which is hyperglycemia. To develop the full state of diabetes mellitus, IR should be associated with the impairment of insulin release from beta-cells of the pancreas. Periodic screening of individuals of high risk, such as those with obesity, hypercholesterolemia, and pregnant nulliparous women in antenatal control, is vital, as these are important checkpoints to detect cases of insulin resistance. This is pivotal as IR can be reversed, provided it is detected in its early stages, through healthy dietary habits, regular exercise, and the use of hypoglycemic agents. In this review, we discuss the pathophysiology, etiology, diagnosis, preventive methods, and management of IR in brief.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960458 | PMC |
http://dx.doi.org/10.3390/nu15040921 | DOI Listing |
Background: Senile dementia (SD) is a deteriorative organic brain disorder and it comprises Alzheimer's disease (AD) as a major variant. SD is shown impairment of mental capacities whereas AD is degeneration of neurons. According to World Health Organization (WHO) report; more than 55 million peoples have dementia and it is raising 10 million new cases every year.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Loma Linda University Health, Loma Linda, CA, USA.
Background: Only about 50% of the variance in cognitive decline occurring during Alzheimer's pathogenesis is attributable to standard AD biomarkers (cerebrocortical Aβ, pathological tau, and atrophy) (Tosun et al., Alzheimer's Dement. 18: 1370, 2022).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Afe-Babalola University, Ado-Ekiti, Ekiti State, Nigeria.
Background: Diabetic conditions are associated with alterations in brain functions like memory deficits through processes like synaptic dysfunction in the hippocampus. Administering a combination of silver nanonaringenin and vitamin E appears promising since they are known to prevent diabetes and memory deficits in previous studies, and nanoformulation of naringenin may be one way to improve delivery and bioavailability of naringenin in the brain. This study investigated the effects of co-administering silver nanonaringenin and vitamin E against memory deficits and synaptic dysfunction in the hippocampus of a mice model of high-fat diet and streptozotocin (HS).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common form of dementia. Although AD is characterized by the accumulation of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs), it's estimated that nearly half of AD cases might be attributed to modifiable risk factors and lifestyle-based interventions may offer promising preventative strategies to delay disease onset and progression. Polyphenolic derivatives easily found in foods like luteolin and curcumin have shown beneficial effects to counteract cognitive decline.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
UIPS, CHANDIGARH, Punjab, India.
Background: Alzheimer's disease is a brain disorder that causes neurodegeneration and is linked with insulin resistance at molecular, clinical, and demographic levels. Defective insulin signaling promotes Aβ aggregation and accelerates Aβ formation in the brain leading to Type III diabetes.
Objective: The objective of this research project is to demonstrate a linkage if any between the risk of developing Alzheimer's disease and insulin resistance.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!