Is It Time to Reconsider the U.S. Recommendations for Dietary Protein and Amino Acid Intake?

Nutrients

Department of Kinesiology and Community Health, University of Illinois, Urbana-Champaign, IL 61801, USA.

Published: February 2023

Since the U.S. Institute of Medicine's recommendations on protein and amino acid intake in 2005, new information supports the need to re-evaluate these recommendations. New lines of evidence include: (1) re-analysis/re-interpretation of nitrogen balance data; (2) results from indicator amino acid oxidation studies; (3) studies of positive functional outcomes associated with protein intakes higher than recommended; (4) dietary guidance and protein recommendations from some professional nutrition societies; and (5) recognition that the synthesis of certain dispensable amino acids may be insufficient to meet physiological requirements more often than previously understood. The empirical estimates, theoretical calculations and clinical functional outcomes converge on a similar theme, that recommendations for intake of protein and some amino acids may be too low in several populations, including for older adults (≥65 years), pregnant and lactating women, and healthy children older than 3 years. Additional influential factors that should be considered are protein quality that meets operational sufficiency (adequate intake to support healthy functional outcomes), interactions between protein and energy intake, and functional roles of amino acids which could impact the pool of available amino acids for use in protein synthesis. Going forward, the definition of "adequacy" as it pertains to protein and amino acid intake recommendations must take into consideration these critical factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963165PMC
http://dx.doi.org/10.3390/nu15040838DOI Listing

Publication Analysis

Top Keywords

protein amino
16
amino acid
16
amino acids
16
functional outcomes
12
protein
9
amino
8
acid intake
8
recommendations
6
intake
5
time reconsider
4

Similar Publications

We aimed to explore the role of Amino acid metabolism (AAM) and identify biomarkers for prognosis management and treatment of lung adenocarcinoma. Differentially expressed genes (DEGs) associated with AAM in lung adenocarcinoma were selected from public databases. Samples were clustered into varying subtypes using ConsensusClusterPlus based on gene levels.

View Article and Find Full Text PDF

mTOR Signaling Regulates Multiple Metabolic Pathways in Human Lung Fibroblasts After TGF-β and in Pulmonary Fibrosis.

Am J Physiol Lung Cell Mol Physiol

January 2025

Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637.

Idiopathic pulmonary fibrosis is a fatal disease characterized by the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lung with scar tissue. We and others have shown that TGF-β-mediated activation of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and downstream upregulation of Activating Transcription Factor 4 (ATF4) promote metabolic reprogramming in lung fibroblasts characterized by upregulation of the de synthesis of glycine, the most abundant amino acid found in collagen protein. Whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored.

View Article and Find Full Text PDF

Novel inhibition of sortase A by plantamajoside: implications for controlling multidrug-resistant infections.

Appl Environ Microbiol

December 2024

Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China.

In confronting the significant challenge posed by multidrug-resistant (MDR) pathogens, particularly methicillin-resistant (MRSA), the development of innovative anti-infective strategies is essential. Our research focuses on sortase A (SrtA), a vital enzyme for anchoring surface proteins in . We discovered that plantamajoside (PMS), a phenylpropanoid glycoside extracted from .

View Article and Find Full Text PDF

Protein kinase R (PKR) is an interferon-induced antiviral protein activated by autophosphorylation in response to double strand DNA (dsRNA) and other stimuli. Activated PKR causes translation inhibition and apoptosis, and it contributes to proinflammatory responses, cell growth, and differentiation. Mouse adenovirus type 1 (MAV-1) counteracts PKR by causing its degradation via a viral protein, early region 4 open reading frame 6 (E4orf6).

View Article and Find Full Text PDF

is a Gram-negative opportunistic pathogen and is a common cause of nosocomial infections. The increasing development of antibiotic resistance in this organism is a global health concern. The clinical isolate AB307-0294 produces a type VI secretion system (T6SS) that delivers three antibacterial effector proteins that give this strain a competitive advantage against other bacteria in polymicrobial environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!