The Jurassic shale in the northeastern Sichuan Basin is one of the main target intervals for continental shale gas exploitation. Research on the pore structure and gas-bearing properties of shales is the key issue in target interval optimization. Through core observation, geochemistry, bulk minerals, scanning electron microscopy, nitrogen adsorption, and isothermal adsorption experiments, various lithofacies with different pore structure characteristics were clarified. In addition, the factors that control gas-bearing properties were discussed, and a continental shale gas enrichment model was finally established. The results show that the Jurassic continental shale in the northeastern Sichuan Basin can be classified into six lithofacies. Organic pores, intergranular pores, interlayer pores in clay minerals, intercrystalline pores in pyrite framboids, and dissolution pores can be observed in shale samples. Pore structures varied in different shale lithofacies. The contact angle of shales is commonly less than 45°, leading to complex wettability of pores in the shales. Free gas content is mainly controlled by the organic matter (OM) content and the brittleness in the Jurassic shale. The adsorbed gas content is mainly controlled by the OM content, clay mineral type, and water saturation of the shales. The enrichment mode of the Lower Jurassic continental shale gas in the northeastern Sichuan Basin is established. Paleoenvironments control the formation of organic-rich shales in the center part of lakes. The "baffle" layer helps the confinement and high pressure, and the complex syncline controls the preservation, forming the enrichment pattern of the complex syncline-central baffle layer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959440 | PMC |
http://dx.doi.org/10.3390/nano13040779 | DOI Listing |
Langmuir
January 2025
Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116023, P. R. China.
Interfacial tension () between CO and brine depends on chemical components in multiphase systems, intricately evolving with a change in temperature. In this study, we developed a convolutional neural network with a multibranch structure (MBCNN), which, in combination with a compiled data set containing measurement data of 1716 samples from 13 available literature sources at wide temperature and pressure ranges (273.15-473.
View Article and Find Full Text PDFSci Rep
January 2025
School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, 2052, Australia.
N is generally employed as a displacement agent to enhance gas recovery in shale gas-bearing reservoirs. However, the primary displacement mechanism in the subsurface still needs to be clarified due to the characteristics of shale reservoirs with low porosity and abundant nanopores. This study employs the Molecular Dynamics (MD) simulation method to investigate the effects of N on the CH accumulation and displacement processes by adopting practical conditions in the subsurface environment.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Key Laboratory for Enhanced Oil & Gas Recovery of the Ministry of Education, Northeast Petroleum University, Daqing 163318, China.
In the process of oilfield development, the surfactant-polymer (SP) composite system has shown significant effects in enhancing oil recovery (EOR) due to its excellent interfacial activity and viscoelastic properties. However, with the continuous increase in the volume of composite flooding injection, a decline in injection-production capacity (I/P capacity) has been observed. Through the observation of frozen core slices, it was found that during the secondary composite flooding (SCF) process, a large amount of residual oil in the form of intergranular adsorption remained in the core pores.
View Article and Find Full Text PDFMolecules
December 2024
State Key Laboratory of Continental Shale Oil, Northeast Petroleum University, Daqing 163318, China.
Due to the complex physical properties of low-permeability glutenite reservoirs, the oil recovery rate with conventional development is low. Surfactants are effective additives for enhanced oil recovery (EOR) due to their good ability of wettability alteration and interfacial tension (IFT) reduction, but the reason why imbibition efficiencies vary with different types of surfactants and the mechanism of enhanced imbibition in the glutenite reservoirs is not clear. In this study, the imbibition efficiency and recovery of surfactants including the nonionic, anionic, and cationic surfactants as well as nanofluids were evaluated and compared with produced water (PW) using low-permeability glutenite core samples from the Lower Urho Formation in the Mahu oil field.
View Article and Find Full Text PDFSci Rep
January 2025
College of Petroleum Engineering, Liaoning Petrochemical University, Fushun, China.
The laminae of varying lithologies are characteristic of shale oil reservoirs, with their pronounced heterogeneity and fluid-solid coupling significantly impacting oil productivity. To this end, this study initially quantified the permeability and mechanical heterogeneity in lamina-developed shale through permeability tests and quasi triaxial mechanical experiments on shale cores from different orientations in the Jiyang Depression. These tests revealed marked brittleness in horizontally oriented cores and elasticity in vertically oriented cores.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!