Metallocene-Filled Single-Walled Carbon Nanotube Hybrids.

Nanomaterials (Basel)

Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.

Published: February 2023

AI Article Synopsis

  • The paper explores how metallocene-filled single-walled carbon nanotubes (SWCNTs) grow, their structure, and the processes involved in their development.
  • It details the methods for filling these nanotubes and examines the impacts of doping on their electrical properties using various spectroscopic techniques.
  • Additionally, the paper discusses potential applications of metallocene-filled SWCNTs in fields such as electrochemistry, thermoelectric power generation, chemical sensors, and magnetic recording.

Article Abstract

In this paper, the growth mechanism, structure, growth processes, growth kinetics, and optical, vibronic and electronic properties of metallocene-filled single-walled carbon nanotubes (SWCNTs) are considered. A description of the procedures used to fill the nanotubes is provided. An investigation of doping effects on metallicity-mixed SWCNTs filled with metallocenes by Raman spectroscopy, near edge X-ray absorption fine structure spectroscopy, photoemission spectroscopy, and optical absorption spectroscopy is described. The studies of doping effects on metallicity-sorted SWCNTs filled with metallocenes are discussed. Doping effects in metallicity-mixed and sorted SWCNTs upon the chemical transformation of encapsulated molecules are analyzed. A discussion of the modification of the electronic properties of filled SWCNTs is presented. Applications of metallocene-filled SWCNTs in electrochemistry, thermoelectric power generation, chemical sensors, and magnetic recording are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962040PMC
http://dx.doi.org/10.3390/nano13040774DOI Listing

Publication Analysis

Top Keywords

doping effects
12
metallocene-filled single-walled
8
single-walled carbon
8
electronic properties
8
effects metallicity-mixed
8
swcnts filled
8
filled metallocenes
8
swcnts
6
carbon nanotube
4
nanotube hybrids
4

Similar Publications

Selective catalytic reduction of NO by NH(NH-SCR) remains challenging for diesel vehicles due to the complex exhaust condition. Cu-SAPO-18 zeolite has emerged as an efficient catalyst for the NH-SCR process, attributed to its unique small pore configuration and high NH-SCR activity. Herein, Zr-modified Cu-SAPO-18 has been fabricated and evaluated for the reduction of NO.

View Article and Find Full Text PDF

Suppressed Degradation Process of PBDB-TF-T1:BTP-4F-12-Based Organic Solar Cells with Solid Additive Atums Green.

ACS Appl Mater Interfaces

January 2025

Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany.

Solid additives have garnered significant attention due to their numerous advantages over liquid additives. This study explores the potential of the green-fluorescent conjugated polymer denoted Atums Green as a solid additive in green-solvent-based PBDB-TF-T1:BTP-4F-12 solar cells. Even tiny amounts of Atums Green doping significantly improve the device performance.

View Article and Find Full Text PDF

Nanoparticles-Based Optical Chemosensors for Lead Acetate Sensing in Water: ZnO, ZnCeO, and ZnNdO.

J Fluoresc

January 2025

Materials Science Lab (1), Physics Department, Faculty of Science, Cairo University, Giza, Egypt.

This study reports the synthesis, characterization, and optical properties of ZnO, ZnCeO, and ZnNdO nanoparticles and their interactions with lead acetate solutions. X-ray diffraction (XRD) confirmed that the nanoparticles were synthesized in a single-phase hexagonal structure, with crystallite sizes of 12.48 nm, 50.

View Article and Find Full Text PDF

Developing highly efficient deep-blue multi-resonance thermal activated delayed fluorescence (MR-TADF) materials for ultra-high-definition organic light-emitting diodes (OLEDs) displays that meet the stringent BT.2020 standard remains a significant challenge. In this study, we present a strategy to achieve high-performance deep-blue MR-TADF emitters by integrating a large π-conjugated double-boron-embedded MR skeleton with strategically positioned peripheral steric hindrance groups.

View Article and Find Full Text PDF

The ability to tune the energy gap in bilayer graphene makes it the perfect playground for the study of the effects of internal electric fields, such as the crystalline field, which are developed when other layered materials are deposited on top of it. Here, we introduce a novel device architecture allowing simultaneous control over the applied displacement field and the crystalline alignment between two materials. Our experimental and numerical results confirm that the crystal field and electrostatic doping due to the interface reflect the 120° symmetry of the bilayer graphene/BN heterostructure and are highly affected by the commensurate state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!