Recently, transition metal oxides have been considered for various applications due to their unique properties. We present the synthesis of a three-component catalyst consisting of zirconium oxide (ZrO), nickel oxide (NiO), and reduced graphene oxide (rGO) in the form of ZrO/NiO/rGO by a simple one-step hydrothermal method. X-ray powder diffraction (XRD), scanning electron microscope (SEM), and bright-field transmission electron microscopy (BF-TEM) analyses were performed to accurately characterize the catalysts. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) analyses were also carried out to investigate the methanol and ethanol alcohol electrooxidation ability of the synthesized nanocatalysts. Inspired by the good potential of metal oxides in the field of catalysts, especially in fuel-cell anodes, we investigated the capability of this catalyst in the methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). After proving the successful synthesis and examining the surface morphology of these materials, detailed electrochemical tests were performed to show the outstanding capability of this new nanocatalyst for use in the anode of alcohol fuel cells. ZrO/NiO/rGO indicated a current density of 26.6 mA/cm at a peak potential of 0.52 V and 99.5% cyclic stability in the MOR and a current density of 17.3 mA/cm at a peak potential of 0.52 V and 98.5% cyclic stability in the EOR (at optimal concentration/scan rate 20 mV/s), representing an attractive option for use in the anode of alcoholic fuel cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964513 | PMC |
http://dx.doi.org/10.3390/nano13040679 | DOI Listing |
Phys Chem Chem Phys
January 2025
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.
Mechanical interatomic bond formation under ultrahigh pressure induced by laser-driven shock waves has been demonstrated for C-C, C-O, and O-O bonds. In this study, molecules generated in primary amine solutions irradiated with high-intensity lasers were identified. When methylamine or ethylamine was dissolved in methanol or ethanol, molecules likely formed through C-C or O-N bonds between the amine and alcohol were detected.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
Electrochemical oxidation of small molecules shows great promise to substitute oxygen evolution reaction (OER) or hydrogen oxidation reaction (HOR) to enhance reaction kinetics and reduce energy consumption, as well as produce high-valued chemicals or serve as fuels. For these oxidation reactions, high-valence metal sites generated at oxidative potentials are typically considered as active sites to trigger the oxidation process of small molecules. Isolated atom site catalysts (IASCs) have been developed as an ideal system to precisely regulate the oxidation state and coordination environment of single-metal centers, and thus optimize their catalytic property.
View Article and Find Full Text PDFChirality
February 2025
Daicel Chiral Technologies, West Chester, Pennsylvania, USA.
The influence of additives and modifiers on the chiral HPLC separation of the nicotine enantiomers using UV/Vis detection is discussed. Selected alcohols as modifiers and selected amines as additives were found to have a significant effect on the resolution and retention times of nicotine enantiomers even to the point of eliminating component elution. Systematic variations in the concentration of ethanol, methanol, and isopropanol, as modifiers, along with variations in the concentration of diethylamine, triethylamine, tributylamine, ethylenediamine, isopropylamine, as additives, revealed that the average resolution (R) of the nicotine enantiomers ranged from 2.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark.
Roaming reactions involving a neutral fragment of a molecule that transiently wanders around another fragment before forming a new bond are intriguing and peculiar pathways for molecular rearrangement. Such reactions can occur for example upon double ionization of small organic molecules, and have recently sparked much scientific interest. We have studied the dynamics of the [Formula: see text]-roaming reaction leading to the formation of [Formula: see text] after two-photon double ionization of ethanol and 2-aminoethanol, using an XUV-UV pump-probe scheme.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, USA. Electronic address:
This study investigated the regenerability of anion exchange resins for per- and polyfluoroalkyl substances (PFAS), focusing on the interaction between regenerant composition and resin characteristics. The influence of salt type and concentration on PFAS solubility revealed a general decline in perfluorohexane sulfonate (PFHxS) solubility with increased salt concentrations, most strongly with KCl followed by NaCl and NHCl. Mixed solubility results were observed for perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!