Graphene is a promising candidate used to reduce friction and wear in micro- and nano-device applications owing to its superior mechanical robustness and intrinsic lubrication properties. Herein, we report the frictional and wear resistance properties of a graphene-coated polymer and how they are affected by fabrication processes. The results show that graphene deposited on a polymer substrate effectively improves both frictional and wear resistance properties, and the degree of improvement significantly depends on the graphene transfer method and interfacial adhesion between graphene and the substrate. Dry-transferred graphene showed better improvement than wet-transferred graphene, and the strong adhesion of graphene achieved by imidazole treatment aided the improvement. A combined analysis of surface morphology and scratch trace shows that the graphene transfer method and graphene adhesion dominate the structural integrity of the transferred graphene, and the graphene/substrate interfacial adhesion plays a decisive role in the improvement of both properties by suppressing the delamination of graphene from the substrate during the nanoscratch test, thereby preventing crack formation in graphene and weakening the puckering effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967740PMC
http://dx.doi.org/10.3390/nano13040655DOI Listing

Publication Analysis

Top Keywords

transfer method
12
interfacial adhesion
12
frictional wear
12
wear resistance
12
resistance properties
12
graphene
12
method interfacial
8
properties graphene-coated
8
graphene-coated polymer
8
graphene transfer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!