Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A two-dimensional graphene-like carbon nitride (g-CN) monolayer decorated with the superatomic cluster NLi was studied for reversible hydrogen storage by first-principles calculations. Molecular dynamics simulations show that the g-CN monolayer has good thermal stability at room temperature. The NLi is firmly anchored on the g-CN monolayer with a binding energy of -6.35 eV. Electronic charges are transferred from the Li atoms of NLi to the g-CN monolayer, mainly due to the hybridization of Li(2s), C(2p), and N(2p) orbitals. Consequently, a spatial local electrostatic field is formed around NLi, leading to polarization of the adsorbed hydrogen molecules and further enhancing the electrostatic interactions between the Li atoms and hydrogen. Each NLi can adsorb nine hydrogen molecules with average adsorption energies between -0.152 eV/H and -0.237 eV/H. This range is within the reversible hydrogen storage energy window. Moreover, the highest achieved gravimetric capacity is up to 9.2 wt%, which is superior to the 5.5 wt% target set by the U.S. Department of Energy. This study shows that g-CN monolayers decorated with NLi are a good candidate for reversible hydrogen storage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964983 | PMC |
http://dx.doi.org/10.3390/nano13040647 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!