We report a robust two-step method for developing adherent and anticorrosive molybdenum (Mo)-based coatings over an aluminum (Al) 6061 alloy substrate using a femtosecond (fs) laser. The fs laser nanostructuring of Al 6061 alloy in air gives rise to regular arrays of microgrooves exhibiting superhydrophilic surface properties. The microstructured surface is further coated with an Mo layer using the fs-pulsed laser deposition (fs-PLD) technique. The combination of the two femtosecond laser surface treatments (microstructuring followed by coating) enabled the development of a highly corrosion-resistant surface, with a corrosion current of magnitude less than that of the pristine, the only structured, and the annealed alloy samples. The underlying mechanism is attributed to the laser-assisted formation of highly rough hierarchical oxide structures on the Al 6061 surface along with post heat treatment, which passivates the surface and provide the necessary platform for firm adhesion for Mo coating. Our results reveal that the corrosive nature of the Al-based alloys can be controlled and improved using a combined approach of femtosecond laser-based surface structuring and coating.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963414 | PMC |
http://dx.doi.org/10.3390/nano13040644 | DOI Listing |
ACS Chem Neurosci
January 2025
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
Targeted cell ablation is a powerful strategy for investigating the function of individual neurons within neuronal networks. Multiphoton ablation technology by a tightly focused femtosecond laser, with its significant advantages of noninvasiveness, high efficiency, and single-cell resolution, has been widely used in the study of neuroscience. However, the firing activity of the ablated neuron and its impact on the surrounding neurons and entire neuronal ensembles are still unclear.
View Article and Find Full Text PDFChem Biodivers
December 2024
Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El Arab, Alexandria, Egypt.
Breast cancer ranks as the second most widespread form of cancer globally. Currently, combination therapy is being actively employed in clinical practice to augment the efficiency of anticancer treatment. Hence, the objective of this study was to assess the therapeutic efficacy of a combination of femtosecond laser-based photodynamic therapy (PDT) utilizing two distinct photosensitizers (PSs), zinc phthalocyanine tetrasulfonate (ZnPcS) and α,β,χ,δ porphyrin-Tetrakis (1-methylpyridinium-4-yl) p-Toluenesulfonate porphyrin (TMPyP) in conjunction with doxorubicin chemotherapeutic agent, on mammary carcinomas experimentally induced in female mice using 7,12-dimethylbenz[a] anthracene (DMBA).
View Article and Find Full Text PDFMicrosc Res Tech
December 2024
Institute of Photonics and Photon-Technology, Northwest University, Xi'an, China.
Nonlinear multimode imaging is a versatile tool to realize complex structural and compositional information of biological samples. In this study, we presented a novel integrated multimode nonlinear optical microscopy system by using an Er3 + -doped femtosecond fiber laser. The system could perform second harmonic generation (SHG), third harmonic generation (THG), and three-photon fluorescence (3PEF) imaging modes simultaneously.
View Article and Find Full Text PDFUltrasonics
November 2024
Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 106, India. Electronic address:
Surface acoustic waves have emerged as one of the potential candidates for the development of next-generation wave-based information and computing technologies. For practical devices, it is essential to develop the excitation techniques for different types of surface acoustic waves, especially at higher microwave frequencies, and to tailor their frequency versus wave vector characteristics. We show that this can be done by using ultrashort laser pulses incident on the surface of a multilayer decorated with a periodic array of metallic nanodots.
View Article and Find Full Text PDFIn this paper, we present the demonstration of a cavity-dumped Kerr-lens mode-locked femtosecond oscillator based on an Yb:CALYO crystal for the first time. With the assistance of an SESAM, the Kerr-lens mode-locked Yb:CALYO laser delivered pulses with an average power of 2.8 W at a repetition rate of 61.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!