A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanostructure, Plastic Deformation, and Influence of Strain Rate Concerning Ni/AlO Interface System Using a Molecular Dynamic Study (LAMMPS). | LitMetric

Nanostructure, Plastic Deformation, and Influence of Strain Rate Concerning Ni/AlO Interface System Using a Molecular Dynamic Study (LAMMPS).

Nanomaterials (Basel)

Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Published: February 2023

The plastic deformation mechanisms of Ni/AlO interface systems under tensile loading at high strain rates were investigated by the classical molecular dynamics (MD) method. A Rahman-Stillinger-Lemberg potential was used for modeling the interaction between Ni and Al atoms and between Ni and O atoms at the interface. To explore the dislocation nucleation and propagation mechanisms during interface tensile failure, two kinds of interface structures corresponding to the terminating Ni layer as buckling layer (Type I) and transition layer (Type II) were established. The fracture behaviors show a strong dependence on interface structure. For Type I interface samples, the formation of Lomer-Cottrell locks in metal causes strain hardening; for Type II interface samples, the yield strength is 40% higher than that of Type I due to more stable Ni-O bonds at the interface. At strain rates higher than 1×109 s-1, the formation of L-C locks in metal is suppressed (Type I), and the formation of Shockley dislocations at the interface is delayed (Type II). The present work provides the direct observation of nucleation, motion, and reaction of dislocations associated with the complex interface dislocation structures of Ni/AlO interfaces and can help researchers better understand the deformation mechanisms of this interface at extreme conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967036PMC
http://dx.doi.org/10.3390/nano13040641DOI Listing

Publication Analysis

Top Keywords

interface
12
plastic deformation
8
ni/alo interface
8
deformation mechanisms
8
strain rates
8
mechanisms interface
8
layer type
8
type interface
8
interface samples
8
locks metal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!