Broadband Plasmonic Metamaterial Optical Absorber for the Visible to Near-Infrared Region.

Nanomaterials (Basel)

Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.

Published: February 2023

An oblique angle and polarization insensitive metamaterial absorber (MA) are highly desired for the visible and infrared optical applications like, wave energy harvesting, optical filters, and detecting thermal leaks and electrical defects. In this paper, a multi-layered MA consisting of two layers of tungsten resonators on a silicon dioxide substrate, coated with additional SiO materials is investigated. The unit cell size of the MA is 0.5λ × 0.5λ × 0.8λ, at the lowest wavelength. The proposed MA offers an average absorption of 92% from 400 nm to 2400 nm with stable oblique incident angles up to 45°. The structure also achieves polarization insensitivity at the entire visible and near-infrared spectrum. Moreover, the MA is found highly compatible for solar absorber applications with high y A. The structure is also compatible for filter application in optical communication system by modifying the plasmonic nano structure. The modified structure can block the wavelengths of the visible band (450 nm to 800 nm) and transmit optical communication bands (800 to 1675 nm). These versatile absorption and filtering performance make the proposed design highly potential for solar energy harvesting, photodetection, thermal imaging, photo-trapping, and optical communications applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960955PMC
http://dx.doi.org/10.3390/nano13040626DOI Listing

Publication Analysis

Top Keywords

visible near-infrared
8
energy harvesting
8
optical communication
8
optical
6
broadband plasmonic
4
plasmonic metamaterial
4
metamaterial optical
4
optical absorber
4
visible
4
absorber visible
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!