Berries of blackcurrant ( L.) are popular for their strong and complex aroma and their benefits for health. In Burgundy (France), the most famous blackcurrant cultivar is the "Noir de Bourgogne". A blackcurrant breeding program was conducted to obtain new varieties, more resistant to infections and climate changes. The cultivar "Noir de Bourgogne" was crossed with seven other varieties in order to create a hybrid with good agronomic properties and organoleptic properties close to the ones of "Noir de Bourgogne". Several hybrids were created, and their aromatic profiles studied. Berries of eight cultivars, among which Noir de Bourgogne and hybrids resulting from crossings, were harvested during the summer of 2020. Volatile compounds of berries were analyzed by HS-SPME-GC-MS, and principal component analysis (PCA) was used as the most useful chemometric technique. The profiles in volatile compounds of hybrids were either different from those of the two parental varieties or close to that of varieties other than Bourgogne black. In all cases, the overall aroma strength of the hybrid did not equal that of the Noir de Bourgogne cultivar.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965356PMC
http://dx.doi.org/10.3390/molecules28041916DOI Listing

Publication Analysis

Top Keywords

volatile compounds
12
noir bourgogne
12
"noir bourgogne"
12
profiles volatile
8
bourgogne cultivar
8
cultivar "noir
8
varieties
5
compounds hybrid
4
hybrid families
4
families crossings
4

Similar Publications

Common adhesives for nonstructural applications are manufactured using petrochemicals and synthetic solvents. These adhesives are associated with environmental and health concerns because of their release of volatile organic compounds (VOCs). Biopolymer adhesives are an attractive alternative because of lower VOC emissions, but their strength is often insufficient.

View Article and Find Full Text PDF

Hierarchical Porous Aggregate-Enabled Chromatography-Inspired Single-Sensor E-Nose for Volatile Monitoring.

ACS Sens

January 2025

School of Chemistry and Molecular Engineering, In Situ Devices Research Center, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China.

Monitoring volatile organic compounds (VOCs) is crucial for ensuring safety and health. In this study, we introduce a strategy to engineer a chromatography-inspired single-sensor (CISS) e-nose tailored for VOC monitoring. This approach overcomes the limitations of traditional methodologies and conventional e-noses.

View Article and Find Full Text PDF

Background: Ips typographus (L.), the eight-toothed spruce bark beetle (Coleoptera: Scolytinae), has devastated European Norway spruce (Picea abies) forests in recent years. For the first time, I.

View Article and Find Full Text PDF

[The role of volatile organic compounds in plant-insect communication].

Biol Aujourdhui

January 2025

Sorbonne Université, Institut d'Écologie et des Sciences de l'Environnement de Paris, 4 place Jussieu, 75005 Paris, France - Institut Universitaire de France, Paris, France.

Insects and flowering plants are the most abundant and diverse multicellular organisms on Earth, accounting for 75% of known species. Their evolution has been largely interdependent since the so-called Angiosperm Terrestrial Revolution (100-50 Mya), when the explosion of plant diversity stimulated the evolution of pollinating and herbivorous insects. Plant-insect interactions rely heavily on chemical communication via volatile organic compounds (VOCs).

View Article and Find Full Text PDF

[The many ways flowers send signals to pollinators].

Biol Aujourdhui

January 2025

Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris), Paris, France - Sorbonne Université, 4 place Jussieu, 75005 Paris, France.

The evolutionary success of angiosperms, which make up more than 95 percent of the world's terrestrial flora, is largely based on their interactions with animal pollinators. Indeed, it is estimated that, on average, 87.5 percent of flowering plants are pollinated by animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!