Lipid-related cancers cause a large number of deaths worldwide. Therefore, development of highly efficient Lipid droplets (LDs) fluorescent imaging probes will be beneficial to our understanding of lipid-related cancers by allowing us to track the metabolic process of LDs. In this work, a LDs-specific NIR ( = 698 nm) probe, namely BY1, was rationally designed and synthesized via a one-step reaction by integrating triphenylamine (electron-donor group) unit into the structure of rofecoxib. This integration strategy enabled the target BY1 to form a strong Donor-Acceptor (D-A) system and endowed BY1 with obvious aggregation-induced emission (AIE) effect. Meanwhile, BY1 also showed observable solvent effect and reversible mechanochromatic luminescent property, which could be interpreted clearly via density functional theory (DFT) calculations, differential scanning calorimetry (DSC), powder X-ray diffraction (XPRD), and single crystal X-ray data analysis. More importantly, BY1 exhibited highly specific fluorescent imaging ability (Pearson's correlation = 0.97) towards lipid droplets in living HeLa cells with low cytotoxicity. These results demonstrated that BY1 is a new promising fluorescent probe for lipid droplets imaging, and it might be beneficial to facilitate biological research of lipid-related cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967153PMC
http://dx.doi.org/10.3390/molecules28041814DOI Listing

Publication Analysis

Top Keywords

lipid-related cancers
12
lipid droplets
12
fluorescent probe
8
fluorescent imaging
8
by1
6
facile transformation
4
transformation rofecoxib
4
rofecoxib near-infrared
4
lipid
4
near-infrared lipid
4

Similar Publications

Associations of Blood Lipid-Related Polygenic Scores, Lifestyle Factors and Their Combined Effects with Risk of Coronary Artery Disease in the UK Biobank Cohort.

J Cardiovasc Transl Res

December 2024

Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.

Circulating lipids play a crucial role in the development of coronary artery disease (CAD). However, it is unclear whether the genetic susceptibility to hyperlipidemia may interact with lifestyle factors in CAD risk. Using UK Biobank data from 328,606 participants, we evaluated combined effects of genetic susceptibility to hyperlipidemia and lifestyle factors with risk of CAD.

View Article and Find Full Text PDF

Unraveling lipid metabolism for acute myeloid leukemia therapy.

Curr Opin Hematol

November 2024

Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.

Purpose Of Review: The aim of this review is to highlight the importance of lipids' intricate and interwoven role in mediating diverse acute myeloid leukemia (AML) processes, as well as potentially novel lipid targeting strategies. This review will focus on new studies of lipid metabolism in human leukemia, particularly highlighting work in leukemic stem cells (LSCs), where lipids were assessed directly as a metabolite.

Recent Findings: Lipid metabolism is essential to support LSC function and AML survival through diverse mechanisms including supporting energy production, membrane composition, signaling pathways, and ferroptosis.

View Article and Find Full Text PDF

Label-Free Prediction of Tumor Metastatic Potential via Ramanome.

Small Methods

November 2024

Shandong Provincial Key Laboratory of Clinical Research for Pancreatic Diseases, Center for GI Cancer Diagnosis and Treatment, Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.

Assessing metastatic potential is crucial for cancer treatment strategies. However, current methods are time-consuming, labor-intensive, and have limited sample accessibility. Therefore, this study aims to investigate the urgent need for rapid and accurate approaches by proposing a Ramanome-based metastasis index (RMI) using machine learning of single-cell Raman spectra to rapidly and accurately assess tumor cell metastatic potential.

View Article and Find Full Text PDF

The Role of Fatty Acid Metabolism, the Related Potential Biomarkers, and Targeted Therapeutic Strategies in Gastrointestinal Cancers.

Drug Dev Res

November 2024

Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China.

Gastrointestinal cancer has emerged as a significant global health concern due to its high incidence and mortality, limited effectiveness of early detection, suboptimal treatment outcomes, and poor prognosis. Metabolic reprogramming is a prominent feature of cancer, and fatty acid metabolism assumes a pivotal role in bridging glucose metabolism and lipid metabolism. Fatty acids play important roles in cellular structural composition, energy supply, signal transduction, and other lipid-related processes.

View Article and Find Full Text PDF

Agaricus blazei murill (ABM) mainly exerts its antitumor effect via modulation of the immune system. However, the immunomodulatory role of the ABM polysaccharide (ABMP) in mice with subcutaneously and intraperitoneally implanted MC38 tumor remains to be explored. This study aimed to define the progression effect of inhibiting tumor of ABMP in subcutaneous and intraperitoneal models and its effect on tumor microenvironment (TME) metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!