Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Microanalysis techniques based on resonance Raman and reflection visible spectroscopy have been applied to the characterization of pigments responsible for the blue or violet coloration in flowers; in particular of , , , , , , and . The spectroscopic methods were applied both in vivo on the flower petals and in vitro on extracts obtained through a procedure based on SPE (solid-phase extraction) optimized for minimal quantities of vegetable raw material. Different patterns obtained for the Raman spectra have been correlated, also on the basis of density functional theory (DFT) calculations, with different schemes of substitution of the benzopyrilium nucleus of the anthocyanins and with various possible forms of copigmentation responsible for the stabilization of the blue color. The results obtained were verified by comparison with the analysis of the extracts by HPLC-ESI-MS (liquid chromatography-electrospray ionization-mass spectrometry).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959989 | PMC |
http://dx.doi.org/10.3390/molecules28041709 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!