The appearance and increasing number of microorganisms resistant to the action of antibiotics is one of the global problems of the 21st century. Already, the duration of therapeutic treatment and mortality from infectious diseases caused by pathogenic microorganisms have increased significantly over the last few decades. Nanoscale inorganic materials (metals and metal oxides) with antimicrobial potential are a promising solution to this problem. Here we discuss possible mechanisms of pathogenic microorganisms' resistance to antibiotics, proposed mechanisms of action of inorganic nanoparticles on bacterial cells, and the possibilities and benefits of their combined use with antibacterial drugs. The prospects of using metal and metal oxide nanoparticles as carriers in targeted delivery systems for antibacterial compositions are also discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959110PMC
http://dx.doi.org/10.3390/molecules28041603DOI Listing

Publication Analysis

Top Keywords

hybrid nanosystems
4
nanosystems antibiotics
4
metal
4
antibiotics metal
4
metal nanoparticles-novel
4
nanoparticles-novel antibacterial
4
antibacterial agents
4
agents appearance
4
appearance increasing
4
increasing number
4

Similar Publications

Rheumatoid arthritis (RA) is a prevalent autoimmune disease characterized by chronic inflammation and excessive proliferation of the synovium. Currently, treatment options focus on either reducing inflammation or inhibiting synovial hyperplasia. However, these modalities are unsatisfactory in achieving the desired therapeutic outcomes.

View Article and Find Full Text PDF

Perovskite in Triboelectric Nanogenerator and the Hybrid Energy Collection System.

Materials (Basel)

December 2024

Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.

In the context of escalating energy demands and environmental sustainability, the paradigm of global energy systems is undergoing a transformative shift to innovative and reliable energy-harvesting techniques ranging from solar cells to triboelectric nanogenerators (TENGs) to hybrid energy systems, where a fever in the study of perovskite materials has been set off due to the excellent optoelectronic properties and defect tolerance features. This review begins with the basic properties of perovskite materials and the fundamentals of TENGs, including their working principles and general developing strategy, then delves into the key role of perovskite materials in promoting TENG-based hybrid technologies in terms of energy conversion. While spotlighting the coupling of triboelectric-optoelectronic effects in harnessing energy from a variety of sources, thereby transcending the limitations inherent to single-source energy systems, this review pays special attention to the strategic incorporation of perovskite materials into TENGs and TENG-based energy converting systems, which heralds a new frontier in enhancing efficiency, stability, and adaptability.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) are excellent antimicrobial agents and promising candidates for preventing or treating bacterial infections caused by antibiotic resistant strains. However, their increasing use in commercial products raises concerns about their environmental impact. In addition, traditional physicochemical approaches often involve harmful agents and excessive energy consumption, resulting in AgNPs with short-term colloidal stability and silver ion leaching.

View Article and Find Full Text PDF

Si metasurface supporting multiple quasi-BICs for degenerate four-wave mixing.

Nanophotonics

August 2024

Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina.

Article Synopsis
  • Dielectric metasurfaces with quasi-bound states in the continuum (qBICs) can boost field enhancement through narrow resonances in the visible and near-infrared ranges.
  • A new silicon-on-silica metasurface design supports up to four qBIC resonances by using an elliptical cylinder array with varied symmetry-breaking shapes.
  • The study showcases the nonlinear process of four-wave mixing and highlights the potential applications in areas like information multiplexing and multi-wavelength sensing using the unique geometric control of qBICs.
View Article and Find Full Text PDF

Active Huygens' metasurface based on grown conductive polymer.

Nanophotonics

January 2024

School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia.

Article Synopsis
  • Active metasurfaces enable advanced light manipulation for applications like displays, holograms, and sensors, but previous designs have struggled to meet all key performance metrics required for practical use.
  • The newly developed active Huygens' metasurface, made from conductive polyaniline (PANI), notably improves performance with a switching speed of 60 fps, over 2000 cycles of durability, and high modulation contrast exceeding 1400%.
  • This PANI-based design offers efficient electrical control and can be integrated into other systems, moving us closer to reliable and compact optical devices for future technologies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!