Microbial communities in the rhizosphere influence nutrient acquisition and stress tolerance. How abiotic and biotic factors impact the plant microbiome in the wild has not been thoroughly addressed. We studied how plant genotype and soil affect the rhizosphere microbiome of , an endemic species of the Andean region that has not been domesticated or cultivated. Using high-throughput sequencing of the 16S rRNA and ITS region, we characterized 39 rhizosphere samples of from four plant genetic clusters in two soil regions from the Ecuadorian Highlands. Our results showed that Proteobacteria and Acidobacteria were the most abundant bacterial phyla and that fungal communities were not dominated by any specific taxa. Soil region was the main predictor for bacterial alpha diversity, phosphorous and lead being the most interesting edaphic factors explaining this diversity. The interaction of plant genotype and altitude was the most significant factor associated with fungal diversity. This study highlights how different factors govern the assembly of the rhizosphere microbiome of a wild plant. Bacterial communities depend more on the soil and its mineral content, while plant genetics influence the fungal community makeup. Our work illustrates plant-microbe associations and the drivers of their variation in a unique unexplored ecosystem from the Ecuadorian Andes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961955PMC
http://dx.doi.org/10.3390/microorganisms11020399DOI Listing

Publication Analysis

Top Keywords

plant genotype
12
genotype soil
8
fungal communities
8
communities rhizosphere
8
microbiome wild
8
rhizosphere microbiome
8
plant
7
soil
5
rhizosphere
5
untangling effects
4

Similar Publications

Water scarcity is an ecological issue affecting over 10% of Europe. It is intensified by rising temperatures, leading to greater evaporation and reduced precipitation. Agriculture has been confirmed as the sector accounting for the highest water consumption globally, and it faces significant challenges relating to drought, impacting crop yields and food security.

View Article and Find Full Text PDF

Soybean () is a leguminous plant with a broad range of applications, particularly in agriculture and food production, where its seed composition-especially oil and protein content-is highly valued. Improving these traits is a primary focus of soybean breeding programs. In this study, we conducted a genome-wide association study (GWAS) to identify genetic loci linked to oil and protein content in seeds, using imputed genotype data for 180 Eurasian soybean varieties and the novel "genotypic twins" approach.

View Article and Find Full Text PDF

Genotyping Genebank Collections: Strategic Approaches and Considerations for Optimal Collection Management.

Plants (Basel)

January 2025

United States Department of Agriculture Agricultural Research Service Small Grains and Potato Germplasm Research, Aberdeen, ID 83210, USA.

The maintenance of plant germplasm and its genetic diversity is critical to preserving and making it available for food security, so this invaluable diversity is not permanently lost due to population growth and development, climate change, or changing needs from the growers and/or the marketplace. There are numerous genebanks worldwide that serve to preserve valuable plant germplasm for humankind's future and to serve as a resource for research, breeding, and training. The United States Department of Agriculture (USDA) National Plant Germplasm System (NPGS) and the Consultative Group for International Agricultural Research (CGIAR) both have a network of plant germplasm collections scattered across varying geographical locations preserving genetic resources for the future.

View Article and Find Full Text PDF

The members of the genus Mill. are notable for producing a diverse range of structurally intricate secondary metabolites, being the focus of current phytochemical research. Their importance is recognized as several species hold significant ethnopharmacological value, being traditionally used to address ailments in human systems, such as respiratory, gastrointestinal, and urinary conditions, among others.

View Article and Find Full Text PDF

The funarioid moss species , which is threatened with extinction, was the subject of this study. The riparian habitat type of this species is often under the influence of contaminated water, and, therefore, we tested the influence of selected potentially toxic elements (PTEs), namely zinc and copper, on the development, physiological features, and survival of the species on two different accessions (German and Croatian). The results obtained showed the different resilience of the two accessions to the PTEs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!