Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Replant disease caused by continuous cropping commonly occurs in yam with consecutive monoculture. However, little is known about how the continuous cropping of yam affects the rhizospheric soil bacterial community structure. In this study, the effects of continuous cropping on rhizospheric soil characteristics, bacterial diversity, and community structure were investigated in the Yongfeng yam fields under monoculture for 1, 5, 10, 15, and 20 years. Long-term monoculture caused soil acidification and increased the concentration of available potassium (AK) and available phosphorus (AP), and soil bacterial richness, but decreased the soil bacterial diversity. An exception was for the field under monoculture for 20 years as it showed the highest bacterial diversity. The relative abundance of beneficial bacteria, such as Proteobacteria, Actinobacteria, and Chloroflexi decreased while the relative abundance of harmful bacteria, including Gemmatimonadetes and Acidobacteria, increased with an extended continuous cultivation time. The networks varied among yams with different cultivation years and became complex with the increase in cultivation years. However, after time in monoculture, the bacterial network decreased gradually and existed stably. These changes in bacterial community composition and co-occurrence of networks may increase the potential risk of soil-borne disease and reduce the yield and quality of Yongfeng yam.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959641 | PMC |
http://dx.doi.org/10.3390/microorganisms11020274 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!