There are two main themes in the research on the biodegradation of industrial materials by mycelial fungi. The challenge of reducing environmental pollution necessitates the creation of biodegradable polymers that allow microorganisms, including mycelial fungi, to degrade them to low-molecule soluble substances. Additionally, to minimize the biodegradation of industrial materials while they are operating in the environment, there is a need to produce fungi-resistant polymer compositions. The fungal resistance of industrial materials and products can be assessed using a specific set of mycelial fungi cultures. Test cultures selected for this purpose are supported in the All-Russian Collection of Microorganisms (VKM). This review addresses the principle of culture selection to assess the fungal resistance of industrial materials and evaluates the results of the tests using these cultures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959004 | PMC |
http://dx.doi.org/10.3390/microorganisms11020251 | DOI Listing |
Int J Mol Sci
December 2024
Institute of Animal Husbandry, Pasture and Green Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China.
is a destructive pathogen responsible for sunflower sclerotinia rot, resulting in substantial yield and economic losses worldwide. species have demonstrated the capacity to inhibit plant pathogen growth through the production of secondary metabolites. However, there are fewer recent studies focusing on the application of metabolites in inhibiting growth and development and controlling sunflower sclerotinia rot disease.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Research Institute for Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), The SATCM's Key Unit of Discovering and Developing New Marine TCM Drugs, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
() is a necrotrophic fungus responsible for apple Valsa canker, which significantly diminishes apple production yields and quality in China. Our serendipitous findings revealed that genistein significantly inhibits the mycelial growth of , with an inhibition rate reaching 42.36 ± 3.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Laboratório da Interação Planta-Patógeno, Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil.
Maize leaf blight (MLB), caused by the fungus , is an important disease affecting maize production. In order to minimize the use of fungicides in agriculture, nutrient-based resistance inducers may become a promising alternative to manage MLB. The goal of this study was to investigate the potential of Semia (zinc (20%) complexed with a plant-derived pool of polyphenols (10%)) to hamper the infection of maize leaves by by analyzing their photosynthetic performance and carbohydrate and antioxidative metabolism, as well as the expression of defense-related genes.
View Article and Find Full Text PDFBioresour Bioprocess
January 2025
Laboratory of Forest Biochemistry, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
The global trend toward carbon neutrality and sustainability calls for collaborative efforts in both the basic and applied research sectors to utilize mushroom mycelia as environmentally friendly and sustainable materials. Fungi, along with animals and plants, are one of the major eukaryotic life forms. They have long been utilized in traditional biotechnology sectors, such as food fermentation, antibiotic production, and industrial enzyme production.
View Article and Find Full Text PDFChem Biodivers
January 2025
BRiCM: Bangladesh Reference Institute for Chemical Measurements, Natural Product Chemistry, Dhaka, 1205, Dhaka, BANGLADESH.
Introduction: Ethnomedicinal plants in Asia offer a promising, low-side-effect alternative to synthetic drugs for treating fungal infections, one of the most widespread communicable diseases caused by pathogenic fungi. Despite being underexplored, the region's rich plant diversity holds the potential for developing effective antifungal drugs. Research is increasingly focused on bioactive compounds from these plants, which show strong antifungal properties and may serve as leads for new drug development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!