Due to ethical issues and the nature of the ear, it is difficult to directly perform experimental measurements on living body elements of the human ear. Therefore, a numerical model has been developed to effectively assess the effect of the replacement of artificial ossicles on hearing in the inner ear. A healthy volunteer's right ear was scanned to obtain CT data, which were digitalized through the use of a self-compiling program and coalescent Patran-Nastran software to establish a 3D numerical model of the whole ear, and a frequency response of a healthy human ear was analyzed. The vibration characteristics of the basilar membrane (BM) after total ossicular replacement prosthesis (TORP) implantation were then analyzed. The results show that although the sound conduction function of the middle ear was restored after replacement of the TORP, the sensory sound function of the inner ear was affected. In the low frequency and medium frequency range, hearing loss was 5.2~10.7%. Meanwhile, in the middle-high frequency range, the replacement of a middle ear TORP in response to high sound pressure produced a high acoustic stimulation effect in the inner ear, making the inner ear structures susceptible to fatigue and more prone to fatigue damage compared to the structures in healthy individuals. This developed model is able to assess the effects of surgical operation on the entire hearing system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962337PMC
http://dx.doi.org/10.3390/mi14020483DOI Listing

Publication Analysis

Top Keywords

inner ear
20
ear
12
artificial ossicles
8
ossicles hearing
8
hearing inner
8
human ear
8
numerical model
8
middle ear
8
frequency range
8
replacement
5

Similar Publications

Assembly of actin-based stereocilia is critical for cochlear hair cells to detect sound. To tune their mechanosensivity, stereocilia form bundles composed of graded rows of ascending height, necessitating the precise control of actin polymerization. Myosin 15 (MYO15A) drives hair bundle development by delivering critical proteins to growing stereocilia that regulate actin polymerization via an unknown mechanism.

View Article and Find Full Text PDF

[Application of 3D-Flair MRI and vestibular function assessment in profound sudden sensorineural hearing loss patients].

Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi

January 2025

Department of Otology Medicine, Shandong Provincial ENT Hospital, Shandong University, Jinan250022, China.

To analyse the 3D-Flair MRI manifestations of the inner ear, vestibular function status, and their correlation with hearing treatment outcomes in patients with severe sudden sensorineural hearing loss (SSNHL), and to explore potential prognostic indicators for sudden deafness. The clinical data of adult patients with unilateral profound sudden sensorineural hearing loss were retrospectively analyzed in Otorhinolaryngology Department of Shandong Provincial ENT Hospital from March 2018 to August 2020. Patients were categorized based on the results of their inner ear 3D-Flair MRI into two groups: the normal MRI group and the abnormal MRI group.

View Article and Find Full Text PDF

Purpose: To compare vestibulo-ocular reflex (VOR) gain values, gain symmetry between the semicircular canals (SCCs), and saccadic parameters in patients with a nosological diagnosis of Ménière's disease (MD) and vestibular migraine (VM).

Methods: Observational, descriptive, cross-sectional, retrospective study, approved by the Research Ethics Committee, under evaluation report number 4.462.

View Article and Find Full Text PDF

The cochlea phenotypically differs from the vestibule in the Gfi1 mouse.

Dev Dyn

January 2025

Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, Changchun, China.

Background: Previous studies with Gfi1-mutated lines have shown that Gfi1 is essential for hair cell maturation and survival.

Results: We analyzed the phenotype of another Gfi1-mutated line Gfi1 in the inner ears of neonates at P5-7 and found that the cochlea phenotypically differed from the vestibule in the Gfi1 mouse. Specifically, there was a marked reduction in hair cells in the cochlea, which was characterized by greater reductions in the outer hair cells but far less reductions (mainly in the basal turn) in the inner hair cells, whereas the vestibular hair cells remained unaffected.

View Article and Find Full Text PDF

Background: High-field magnetic resonance imaging (MRI) is a powerful diagnostic tool but can induce unintended physiological effects, such as nystagmus and dizziness, potentially compromising the comfort and safety of individuals undergoing imaging. These effects likely result from the Lorentz force, which arises from the interaction between the MRI's static magnetic field and electrical currents in the inner ear. Yet, the Lorentz force hypothesis fails to explain observed eye movement patterns in healthy adults fully.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!