With the intelligent tool cutting force measurement model as the engineering background, the selection, design, and optimization of the substrate structure of the tool-embedded thin-film strain sensor are studied. The structure of the thin-film strain sensor is studied, and the substrate structure design is divided into function area structure design and connection area structure design. Establishing the substrate structure library of the sensor, we subdivide the library into six layouts of function area infrastructure and five layouts of connection area infrastructure. Taking the sensitivity, fatigue life, and comprehensive mechanical properties of the substrate structure as the design indexes, based on the statics theory, the functional relationship between the structural parameters and the deflection of the six layouts of the substrate function area is established; based on the dynamics theory, the functional relationship between the parameters and the natural frequency of six layouts of the function area is established; based on the coupling of structural statics design theory and dynamics design theory, the evaluation method for the comprehensive performance of the parameters of six layouts of the function area is established. Based on the function area structure, five connection area structures are designed for comprehensive performance analysis. The structural sensitivity of the substrate function area design and optimization is expanded 1.75 times, and the comprehensive performance is expanded 1.53 times. The sensitivity of the connection area design and optimization is expanded 2.3 times, and the comprehensive performance is expanded 1.72 times. The structure is optimized according to the structural stress characteristics, the design, selection, and optimization process of the substrate structure summarized herein, and five design criteria of the substrate structure are proposed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961063 | PMC |
http://dx.doi.org/10.3390/mi14020355 | DOI Listing |
Chem Commun (Camb)
January 2025
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
In this study, a distinctive multiple core-shell structure of Co nanoparticles inserted into N-doped carbon dodecahedron@Co hydroxide (Co/NCD@Co(OH)) was synthesized a spontaneous redox reaction between metallic Co and NO, ultimately materializing the fine dispersion and exposure of the active sites. The electronic interaction existing between the Co/NCD core and the Co(OH) shell brings a synergistic effect, conspicuously lessens the overpotential, and reinforces the yield-rate and faradaic efficiency of NH for electrochemical nitrate-ammonia conversion. This study underlines the spontaneous redox between the catalysts and substrate, rendering it as a synthetic strategy for designing genuine and well-dispersed active sites.
View Article and Find Full Text PDFBioresour Bioprocess
January 2025
Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
Feruloyl esterases (FEs, EC 3.1.1.
View Article and Find Full Text PDFCrit Rev Biochem Mol Biol
January 2025
Department of Chemistry, Emory University, Atlanta, GA, USA.
Mononuclear non-heme iron enzymes catalyze a wide array of important oxidative transformations. They are correspondingly diverse in both structure and mechanism. Despite significant evolutionary distance, it is becoming increasingly apparent that these enzymes nonetheless illustrate a compelling case of mechanistic convergence the formation of peroxo species bridging metal and substrate.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China.
It is a major challenge to obtain broadband microwave absorption (MA) properties using low dielectric or magnetic nanoparticle-decorated carbon composites due to the limited single conductive loss or polarization loss of the carbon materials used as substrates. Novel pure cellulose-derived graphite carbon (CGC) materials can be used as an exceptional substrate option due to their special defective graphitic carbon structure, which provides both conduction and polarization loss. Herein, CGC@ZnO composites were first synthesized by atomic layer deposition (ALD) for use as microwave absorbents.
View Article and Find Full Text PDFChemistry
January 2025
Central University of Gujarat, School of Chemical Sciences, Sector 30, 382030, Gandhinagar, INDIA.
The selective synthesis of 4-alkyl/aryl-3H-1,2-dithiole-3-thione in THF and water-dependent switchable product ketothioamide is demonstrated. The presented method describes explicitly the synthesis of the extremely rare positional isomer 4-alkyl/aryl-3H-1,2-dithiole-3-thione, a unique structure distinct from another positional isomer, 5-alkyl/aryl-3H-1,2-dithiole-3-thione. The unique umpolung of the nitromethyl group is exploited for solvent selective nucleophilic sulfur and amine addition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!