A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design and Analysis of a Hybrid Displacement Amplifier Supporting a High-Performance Piezo Jet Dispenser. | LitMetric

Design and Analysis of a Hybrid Displacement Amplifier Supporting a High-Performance Piezo Jet Dispenser.

Micromachines (Basel)

Key Laboratory of High-Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China.

Published: January 2023

In this study, a compliant amplifier powered by a piezoelectric stack is designed to meet high-performance dispensing operation requirements. By studying the issue of low frequency bandwidth on the traditional bridge-type amplifier mechanism, we propose a displacement amplifier mechanism, hybrid bridge-lever-bridge (HBLB), that enhances its dynamic performance by combining the traditional bridge-type and lever mechanism. A guiding beam is added to further improve its output stiffness with a guaranteed large amplification ratio. An analytical model has been developed to describe the full elastic deformation behavior of the HBLB mechanism that considers the lateral displacement loss of the input end, followed by a verification through a finite element analysis (FEA). Results revealed that the working principle of the HBLB optimizes the structural parameters using the finite element method. Finally, a prototype of the displacement amplifier was fabricated for performance tests. Static and dynamic test results revealed that the proposed mechanism can reach a travel range of 223.2 μm, and the frequency bandwidth is 1.184 kHz, which meets the requirements of a high-performance piezo jet dispenser.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960712PMC
http://dx.doi.org/10.3390/mi14020322DOI Listing

Publication Analysis

Top Keywords

displacement amplifier
12
high-performance piezo
8
piezo jet
8
jet dispenser
8
frequency bandwidth
8
traditional bridge-type
8
amplifier mechanism
8
finite element
8
amplifier
5
mechanism
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!