Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Surface Acoustic Wave (SAW) methane-sensing technology is a new way to detect methane at room temperature. However, the material and structure of the sensitive film are the important factors affecting the detection performance of the sensor. In this paper-with a SAW methane sensor using graphene-nickel cavitation-a composite film is proposed, which can work at room temperature. A delay linear dual-channel differential oscillator with center frequency of 204.3 MHz and insertion loss of -5.658 dB was designed; Cryptophane-A material was prepared by the "three-step method". The composite sensitive film was synthesized by a drop coating method, electrochemical deposition method and electroplating method. The composite film was characterized by SEM. The sensor performance test system and gas sensitivity test system were constructed to determine the response performance of the sensor at concentrations of 0~5% CH. The results showed that the sensor had a good response recovery performance in the test concentration range, and the frequency offset was positively correlated with methane concentration. The 90% average response time and recovery times were 41.2 s and 57 s, respectively. The sensor sensitivity was 809.4 ± 6.93 Hz/(1% CH). This study provides a good theoretical basis for the development of surface acoustic-wave methane sensors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964867 | PMC |
http://dx.doi.org/10.3390/mi14020266 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!