Twenty-eight samples of {[(1-x-y) LiCoCu](Al and Mg doped)]O}, xLiMnO, and yLiCoO composites were synthesized using the sol-gel method. Stoichiometric weights of LiNO, Mn(Ac)⋅4HO, Co(Ac)⋅4HO, Al(NO).Ho, Mg(NO)⋅6HO, and Cu(NO).HO for the preparation of these samples were applied. From this work, we confirmed the high performance of two samples, namely, Sample 18, including Al doped with structure "LiCuCoAlMnO" and Sample 17, including Mg doped with structure "LiCuMgCoMnO", compared with other compositions. Evidently, the used weight of cobalt in these two samples were lower compared with LiCoO, resulting in advantages in the viewpoint of cost and toxicity problems. Charge and discharge characteristics of the mentioned cathode materials were investigated by performing cycle tests in the range of 2.2-4.5 V. These types of systems can help to reduce the disadvantages of cobalt arising from its high cost and toxic properties. Our results confirmed that the performance of such systems is similar to that of pure LiCoO cathode material, or greater in some cases. The biggest disadvantages of LiCoO are its cost and toxic properties, typically making it cost around five times more to manufacture than when using copper.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959737PMC
http://dx.doi.org/10.3390/mi14020241DOI Listing

Publication Analysis

Top Keywords

xlimno ylicoo
8
ylicoo composites
8
cathode material
8
sample including
8
including doped
8
doped structure
8
cost toxic
8
toxic properties
8
increasing performance
4
performance {[1-x-y
4

Similar Publications

Twenty-eight samples of {[(1-x-y) LiCoCu](Al and Mg doped)]O}, xLiMnO, and yLiCoO composites were synthesized using the sol-gel method. Stoichiometric weights of LiNO, Mn(Ac)⋅4HO, Co(Ac)⋅4HO, Al(NO).Ho, Mg(NO)⋅6HO, and Cu(NO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!