Myopic retinopathy is an important cause of irreversible vision loss and blindness. As metabolomics has recently been successfully applied in myopia research, this study sought to characterize the serum metabolic profile of myopic retinopathy in children and adolescents (4-18 years) and to develop a diagnostic model that combines clinical and metabolic features. We selected clinical and serum metabolic data from children and adolescents at different time points as the training set ( = 516) and the validation set ( = 60). All participants underwent an ophthalmologic examination. Untargeted metabolomics analysis of serum was performed. Three machine learning (ML) models were trained by combining metabolic features and conventional clinical factors that were screened for significance in discrimination. The better-performing model was validated in an independent point-in-time cohort and risk nomograms were developed. Retinopathy was present in 34.2% of participants ( = 185) in the training set, including 109 (28.61%) with mild to moderate myopia. A total of 27 metabolites showed significant variation between groups. After combining Lasso and random forest (RF), 12 modelled metabolites (mainly those involved in energy metabolism) were screened. Both the logistic regression and extreme Gradient Boosting (XGBoost) algorithms showed good discriminatory ability. In the time-validation cohort, logistic regression (AUC 0.842, 95% CI 0.724-0.96) and XGBoost (AUC 0.897, 95% CI 0.807-0.986) also showed good prediction accuracy and had well-fitted calibration curves. Three clinical characteristic coefficients remained significant in the multivariate joint model ( < 0.05), as did 8/12 metabolic characteristic coefficients. Myopic retinopathy may have abnormal energy metabolism. Machine learning models based on metabolic profiles and clinical data demonstrate good predictive performance and facilitate the development of individual interventions for myopia in children and adolescents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965721 | PMC |
http://dx.doi.org/10.3390/metabo13020301 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!