A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3051
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3053

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3053
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of a Large-Scale Database of Collision Cross-Section and Retention Time Using Machine Learning to Reduce False Positive Annotations in Untargeted Metabolomics. | LitMetric

Metabolite identification in untargeted metabolomics is complex, with the risk of false positive annotations. This work aims to use machine learning to successively predict the retention time (Rt) and the collision cross-section (CCS) of an open-access database to accelerate the interpretation of metabolomic results. Standards of metabolites were tested using liquid chromatography coupled with high-resolution mass spectrometry. In CCSBase and QSRR predictor machine learning models, experimental results were used to generate predicted CCS and Rt of the Human Metabolome Database. From 542 standards, 266 and 301 compounds were detected in positive and negative electrospray ionization mode, respectively, corresponding to 380 different metabolites. CCS and Rt were then predicted using machine learning tools for almost 114,000 metabolites. R score of the linear regression between predicted and measured data achieved 0.938 and 0.898 for CCS and Rt, respectively, demonstrating the models' reliability. A CCS and Rt index filter of mean error ± 2 standard deviations could remove most misidentifications. Its application to data generated from a toxicology study on tobacco cigarettes reduced hits by 76%. Regarding the volume of data produced by metabolomics, the practical workflow provided allows for the implementation of valuable large-scale databases to improve the biological interpretation of metabolomics data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962007PMC
http://dx.doi.org/10.3390/metabo13020282DOI Listing

Publication Analysis

Top Keywords

machine learning
16
collision cross-section
8
retention time
8
false positive
8
positive annotations
8
untargeted metabolomics
8
ccs
5
prediction large-scale
4
large-scale database
4
database collision
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!