Human breast milk (HBM) is the ideal source of nutrients for infants and is rich in microRNA (miRNA). In recent years, expressed breast milk feeding rather than direct breastfeeding has become increasingly prevalent for various reasons. Expressed HBM requires storage and processing, which can cause various changes in the ingredients. We investigated how the miRNAs in HBM change due to processes often used in real life. HBM samples collected from 10 participants were each divided into seven groups according to the storage temperature, thawing method, and storage period. In addition, we analyzed the miRNA changes in each group. The number of microRNAs that showed significant expression was not large compared to the thousands of miRNAs contained in breast milk. Therefore, it is difficult to suggest that the various storage and thawing processes have a great influence on the overall expression of miRNA. However, a short-term refrigeration storage method revealed little change in nutrients compared to other storage and thawing methods. Taking all factors into consideration, short-term refrigeration is recommended to minimize changes in the composition or function of breast milk.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963775 | PMC |
http://dx.doi.org/10.3390/metabo13020139 | DOI Listing |
Curr Allergy Asthma Rep
January 2025
Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
Purpose Of Review: There is an increasing awareness among clinicians that industrial and household food processing methods can increase or decrease the allergenicity of foods. Modification to allergen properties through processing can enable dietary liberations. Reduced allergenicity may also allow for lower risk immunotherapy approaches.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Pharmacy, Jieyang People's Hospital, Jieyang, China.
Breast milk is essential for infant health, but the transfer of xenobiotic chemicals poses significant risks. Ethical challenges in clinical trials necessitate the use of in vitro predictive models to assess chemical exposure risks in breastfeeding infants. This study introduces an explainable machine learning model to predict the risk of chemical transfer through human milk.
View Article and Find Full Text PDFFood Chem
January 2025
Food College, Northeast Agricultural University, No.600 Changjiang St., Xiangfang Dist, 150030 Harbin, China.
We hypothesized that improving the fat globule structure of infant formulae based on the milk fat globule membrane (MFGM) would regulate metabolites and metabolic pathways, making it more similar to the metabolic properties of human milk. Therefore, we prepared infant formulae with different fat globule structures, including two model infant formulae (F1: fat globules surrounded by MFGM; F2: fat globules surrounded by protein) and one commercial infant formulae containing MFGM, and compared their metabolic differences with those of human milk. The number of differential metabolites between each sample and human milk reached 60 (F1), 132 (F2) and 126 (IF1).
View Article and Find Full Text PDFJ Indian Soc Pedod Prev Dent
October 2024
Department of Pedodontics and Preventive Dentistry, Sardar Patel Post Graduate Institute of Dental and Medical Sciences, Lucknow, Uttar Pradesh, India.
Curr Microbiol
January 2025
Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Organization (AREEO), Karaj, Iran.
Brucella spp. is the bacterium responsible for brucellosis, a zoonotic infection that affects humans. This disease poses significant health challenges and contributes to poverty, particularly in developing countries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!