Borate transporters are membrane transport proteins that regulate intracellular borate levels. In plants, borate is a micronutrient essential for growth but is toxic in excess, while in yeast, borate is unnecessary for growth and borate export confers tolerance. Borate transporters share structural homology with human bicarbonate transporters in the SLC4 family despite low sequence identity and differences in transported solutes. Here, we characterize the borate transporter Bor1p and examine whether key biochemical features of SLC4 transporters extend to borate transporters. We show that borate transporters and SLC4 transporters share multiple properties, including lipid-promoted dimerization, sensitivity to stilbene disulfonate-derived inhibitors, and a requirement for an acidic residue at the solute binding site. We also identify several amino acids critical for Bor1p function and show that disease-causing mutations in human SLC4A1 will eliminate in vivo function when their homologous mutations are introduced in Bor1p. Our data help elucidate mechanistic features of Bor1p and reveal significant functional properties shared between borate transporters and SLC4 transporters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959716PMC
http://dx.doi.org/10.3390/membranes13020235DOI Listing

Publication Analysis

Top Keywords

borate transporters
24
transporters slc4
16
transporters share
12
slc4 transporters
12
borate
11
transporters
10
bicarbonate transporters
8
functional properties
8
slc4
5
slc4 bicarbonate
4

Similar Publications

P-Dopant with Spherical Anion for Stable n-i-p Perovskite Solar Cells.

Angew Chem Int Ed Engl

January 2025

Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1951, Sion, Switzerland.

Li-TFSI/t-BP is the most widely utilized p-dopant for hole-transporting materials (HTMs) in state-of-the-art perovskite solar cells (PSCs). However, its nonuniformity of doping, along with the hygroscopicity and migration of dopants, results in the devices exhibiting limited stability and performance. This study reports on the utilization of a spherical anion derived from the p-dopant, regulated by its radius and shape, as an alternative to the linear TFSI anion.

View Article and Find Full Text PDF

Gap junction intercellular communication (GJIC) between two adjacent cells involves direct exchange of cytosolic ions and small molecules via connexin gap junction channels (GJCs). Connexin GJCs have emerged as drug targets, with small molecule connexin inhibitors considered a viable therapeutic strategy in several diseases. The molecular mechanisms of GJC inhibition by known small molecule connexin inhibitors remain unknown, preventing the development of more potent and connexin-specific therapeutics.

View Article and Find Full Text PDF

Objective: Ca overload of muscle fibers is one of the factors that secondarily aggravate the development of Duchenne muscular dystrophy (DMD). The purpose of this study is to evaluate the effects of the Ca channel modulator 2-aminoethoxydiphenyl borate (APB) on skeletal muscle pathology in dystrophin-deficient mice.

Methods: Mice were randomly divided into six groups: wild type (WT), WT+3 mg/kg APB, WT+10 mg/kg APB, , +3 mg/kg APB, +10 mg/kg APB.

View Article and Find Full Text PDF

Evaluation of rheological properties of guar gum-based fracturing fluids enhanced with hydroxyl group bearing thermodynamic hydrate inhibitors.

Int J Biol Macromol

December 2024

Department of Petroleum Engineering, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India. Electronic address:

Naturally occurring gas clathrates are a significant methane resource-the primary component of natural gas, regarded as the cleanest hydrocarbon and a key feedstock for producing gray and blue hydrogen. Despite the global abundance of gas hydrate reserves, extraction via depressurization has yet to achieve commercially viable production rates. The primary limitation lies in the low permeability of hydrate-bearing sediments, where solid clathrates obstruct porous pathways, hindering dissociation and slowing gas recovery.

View Article and Find Full Text PDF

Thermal-Assisted Dry Coating Electrode Unlocking Sustainable and High-Performance Batteries.

Adv Mater

November 2024

Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China.

Current battery production relies on the use of large amounts of N-methyl-2-pyrrolidnone (NMP) solvent during electrode preparation, which raises serious concerns in material cost, energy consumption, and toxicity, thus demanding the innovation of dry electrodes with excellent performance. However, state-of-the-art dry electrodes show inferior energy densities, particularly under high-areal-capacity and fast charge/discharge conditions required for practical applications. Here dry production of high-energy-density Li- and Mn-rich (LMR) cathodes is shown based on a thermal-assistant approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!