AI Article Synopsis

Article Abstract

Membrane bioreactors (MBRs) are frequently used to treat municipal wastewater, but membrane fouling is still the main weakness of this technology. Additionally, the low carbon-nitrogen (C/N) ratio influent has been shown to not only increase the membrane fouling, but also introduce challenges to meet the effluent discharge standard for nitrogen removal. Herein, the authors addressed the challenges by adding cost-effective biochar. The results suggested that the biochar addition can enable membrane fouling alleviation and nitrogen removal improvement. The reduced membrane fouling can be ascribed to the biochar adsorption capacity, which facilitates to form bigger flocs with carbon skeleton in biochar as a core. As a result, the biochar addition significantly altered the mixed liquor suspension with soluble microbial product (SMP) concentration reduction of approximately 14%, lower SMP protein/polysaccharide ratio from 0.28 ± 0.02 to 0.22 ± 0.03, smaller SMP molecular weight and bigger sludge particle size from 67.68 ± 6.9 μm to 113.47 ± 4.8 μm. The nitrogen removal is also dramatically improved after biochar addition, which can be due to the initial carbon source release from biochar, and formation of aerobic-anaerobic microstructures. Microbial diversity analysis results suggested more accumulation of denitrification microbes including and . Less relative abundance of after biochar addition suggested less extracellular polymer substance (EPS) secretion and lower membrane fouling rate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960794PMC
http://dx.doi.org/10.3390/membranes13020194DOI Listing

Publication Analysis

Top Keywords

membrane fouling
24
biochar addition
20
nitrogen removal
16
biochar
9
membrane
8
fouling alleviation
8
alleviation nitrogen
8
removal improvement
8
municipal wastewater
8
fouling
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!