Background: The interaction of asbestos fibers with target cell membranes is still poorly investigated. Here, we detected and characterized an enhancement of chloride conductance in oocyte cell membranes induced by exposure to crocidolite (Croc) asbestos fibers.

Methods: A two-microelectrode voltage clamp technique was used to test the effect of Croc fiber suspensions on outward chloride currents evoked by step membrane depolarization. Calcium imaging experiments were also performed to investigate the variation of 'resting' oocyte [Ca] following asbestos exposure.

Results: The increase in chloride current after asbestos treatment, was sensitive to [Ca], and to specific blockers of TMEM16A Ca-activated chloride channels, MONNA and Ani9. Furthermore, asbestos treatment elevated the 'resting' [Ca] likelihood by increasing the cell membrane permeability to Ca in favor of a tonic activation of TMEME16A channels Western blot analysis confirmed that TMEME16A protein was endogenously present in the oocyte cell membrane and absorbed by Croc.

Conclusion: the TMEM16A channels endogenously expressed by oocytes are targets for asbestos fibers and represent a powerful tool for asbestos-membrane interaction studies. Interestingly, TMEM16A channels are highly expressed in many types of tumors, including some asbestos-related cancers, suggesting them, for the first time, as a possible early target of crocidolite-mediated tumorigenic effects on target cell membranes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960392PMC
http://dx.doi.org/10.3390/membranes13020180DOI Listing

Publication Analysis

Top Keywords

asbestos fibers
12
cell membranes
12
target cell
8
oocyte cell
8
asbestos treatment
8
cell membrane
8
tmem16a channels
8
asbestos
7
cell
5
fibers enhance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!