Carbon dioxide (CO) is the single largest contributor to climate change due to its increased emissions since global industrialization began. Carbon Capture, Storage, and Utilization (CCSU) is regarded as a promising strategy to mitigate climate change, reducing the atmospheric concentration of CO from power and industrial activities. Post-combustion carbon capture (PCC) is necessary to implement CCSU into existing facilities without changing the combustion block. In this study, the recent research on various PCC technologies is discussed, along with the membrane technology for PCC, emphasizing the different types of membranes and their gas separation performances. Additionally, an overall comparison of membrane separation technology with respect to other PCC methods is implemented based on six different key parameters-CO purity and recovery, technological maturity, scalability, environmental concerns, and capital and operational expenditures. In general, membrane separation is found to be the most competitive technique in conventional absorption as long as the highly-performed membrane materials and the technology itself reach the full commercialization stage. Recent updates on the main characteristics of different flue gas streams and the Technology Readiness Levels (TRL) of each PCC technology are also provided with a brief discussion of their latest progresses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964316PMC
http://dx.doi.org/10.3390/membranes13020130DOI Listing

Publication Analysis

Top Keywords

power industrial
8
climate change
8
carbon capture
8
membrane separation
8
membrane
5
pcc
5
technology
5
decarbonization power
4
industrial sectors
4
sectors role
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!