Ocular alkaline burn is a clinical emergency that can cause permanent vision loss due to limbal stem cell deficiency and corneal neovascularization (CNV). Although the basic pathogenetic mechanisms are considered to be acute oxidative stress and corneal neovascularization triggered by inflammation, the underlying intracellular mechanisms have not been clearly elucidated. The aim of this study was to investigate the role of endoplasmic reticulum (ER) stress on inflammation and neovascularization, and the effect of the ER stress inhibitor salubrinal (SLB), as a novel treatment in a corneal alkaline burn model in rats. Chemical burns were created by cautery for 4 s using a rod coated with 75% silver nitrate and 25% potassium nitrate in the corneal center for the corneal neovascularization (CNV) model. Twenty-eight Wistar albino rats were divided into four groups: SHAM, CNV, CNV + SLB, and CNV + bevacizumab (BVC). After the CNV model was applied to the right eye, a single subconjunctival dose (0.05 mL) of 1 mg/kg salubrinal was injected into both eyes in the CNV + SLB group. A total of 1.25 mg/mL of subconjunctival BVC was administered to the CNV + BVC group. Fourteen days after experimental modeling and drug administration, half of the globes were placed in liquid nitrogen and stored at -20 °C until biochemical analysis. The remaining tissues were collected and fixed in 10% buffered formalin for histopathological and immunohistochemical analysis. Three qualitative agents from three different pathways were chosen: TNFR for inflammation, endothelial nitric oxide synthase (e-NOS) for vascular endothelial growth factor (VEGF)-mediated vascular permeability, and caspase-3 for cellular apoptosis. Significantly lower caspase-3 and eNOS levels were detected in the CNV + SLB and CNV + BVC groups than in the CNV group. Additionally, histopathological evaluation revealed a significant decrease in neovascularization, inflammatory cell infiltration, and fibroblast activity in the CNV + SLB and CNV + BVC groups. The endoplasmic reticulum stress inhibitor, salubrinal, administered to the treatment group, attenuated apoptosis (caspase-3) and inflammation (e-NOS). In the control group (left eyes of the SLB group), salubrinal did not have a toxic effect on the healthy corneas. The ER stress pathway plays an important role in angiogenesis after alkaline corneal burns, and treatment with SLB modulates this pathway, reducing caspase-3 and eNOS levels. Further studies are needed to understand the molecular mechanisms altered by SLB-mediated therapy. The fact that more than one mechanism plays a role in the pathogenesis of CNV may require the use of more than one molecule in treatment. SLB has the potential to affect multiple steps in CNV pathogenesis, both in terms of reducing ER stress and regulating cellular homeostasis by inhibiting the core event of integrated stress response (ISR). Therefore, it can be used as a new treatment option and as a strengthening agent for existing treatments. Although blockade of intracellular organelle stress pathways has shown promising results in experimental studies, more in-depth research is needed before it can be used in routine practice. To the best of our knowledge, this study is the first to report the role of ER stress in corneal injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961429PMC
http://dx.doi.org/10.3390/medicina59020323DOI Listing

Publication Analysis

Top Keywords

corneal neovascularization
16
cnv slb
16
cnv
15
slb cnv
12
cnv bvc
12
stress
9
inflammation neovascularization
8
corneal
8
alkaline burn
8
neovascularization cnv
8

Similar Publications

Herpes simplex keratitis (HSK) is a prevalent infectious corneal disorder. This study aims to explore the role of plasmacytoid dendritic cells (pDCs) in HSK, an area that remains underexplored. The investigation centers on the effects of a STAT1 transcription enhancer, 2-NP, on pDCs and its underlying mechanisms.

View Article and Find Full Text PDF

Nano-alkaline ion-excited NETs ablative eye drops promote ocular surface recovery.

J Control Release

December 2024

Department of Ophthalmology, Changzhou Third Peopls's Hospital, Changzhou Clinical College of Xuzhou Medical University, 300 Lanlin North road, Changzhou, Jiangsu 213000, China. Electronic address:

Neutrophil extracellular traps (NETs) promote neovascularization during the acute phase after ocular chemical injury, while the local inflammatory acidic environment delays post-injury repair. Currently, the mechanism of NETs promoting neovascularization has not been fully elucidated, and there is a lack of therapeutic strategies to effectively improve the local microenvironment for corneal repair. In this study, we validated the NETs-M2-angiogenic pathway after injury.

View Article and Find Full Text PDF

Purpose: To demonstrate that high-seed, ultra-high-resolution spectral-domain optical coherence tomography (SD-OCT) technology can image in vivo fine morphological features in the healthy and pathological human limbus.

Methods: A compact, fiberoptic SD-OCT system was developed for imaging the human limbus. It combines ∼1.

View Article and Find Full Text PDF

Corneal cross-linking.

Prog Retin Eye Res

December 2024

ELZA Institute, Webereistrasse 2, CH-8953, Dietikon, Switzerland; Laboratory for Ocular Cell Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206, Geneva, Switzerland. Electronic address:

First introduced over 20 years ago as a treatment for progressive keratoconus, the original "Dresden" corneal cross-linking (CXL) protocol involved riboflavin saturation of the stroma, followed by 30 min of 3 mW/cm-intensity ultraviolet-A (UV-A) irradiation. This procedure generates reactive oxygen species (ROS) that cross-link stromal molecules, thereby stiffening the cornea and counteracting the ectasia-induced weakening. Due to their large size, riboflavin molecules cannot readily pass through the corneal epithelial cell tight junctions; thus, epithelial debridement was performed.

View Article and Find Full Text PDF

Herpes simplex virus-1 (HSV-1) is the primary cause of infectious blindness. Despite impressive therapeutic outcomes of conventional treatments, HSV-1 drug resistance can be easily developed. Thus, more constructive strategies should be implemented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!