In the production of 3D printable mortar (3DPM), numerous efforts have been made globally to effectively utilise various cementitious materials, admixtures, and fibres. The determination of rheological and material strength properties is crucial for successful 3D concrete printing because the materials used in 3DPM must possess the unique characteristic of making mortar flowable while being strong enough to support the weight of subsequent layers in both fresh and hardened states. The complexity of the required characteristics makes it challenging to develop an optimised mix composition that satisfies both the rheological and material strength requirements, given the wide range of available admixtures, supplementary cementitious materials, and fibres. Fly ash, basalt fibre and superplasticiser when blended with cement can help to improve the overall performance of 3DPM. The objective of this research is to optimise the rheological properties and material strength of 3D printable mortars (3DPM) containing cement, fly ash, basalt fibre, and superplasticiser. This study aims to produce 3DPM with an optimised mix composition to meet the requirements of both rheological and material strength characteristics using the factorial design approach and desirability function. Different dosages of cement, fly ash, basalt fibre, and superplasticiser are chosen as the primary design parameters to develop statistical models for the responses of rheological and material strength properties at 7 and 28 days. The results expressed in terms of the measured properties are valid for mortars made with cement ranging from 550 to 650 kg/m, fly ash from 5% to 20% (of cement), superplasticiser from 2 to 4 kg/m, and basalt fibre from 1 to 3 kg/m. The rheological properties are evaluated using slump flow, cone penetrometer, and cylindrical slump tests, while the mechanical strength is evaluated using a three-point bending test and compressive test. A full factorial design experiment (FoE) is used to determine the significant parameters effecting the measured properties. Prediction models are developed to express the measured properties in terms of the primary parameters. The influence of cement, fly ash, basalt fibre, and superplasticiser is analysed using polynomial regression to determine the main effects and interactions of these primary parameters on the measured properties. The results show that the regression models established by the factorial design approach are effective and can accurately predict the performance of 3DPM. Cement, fly ash, and superplasticiser dosages have significant effects on the rheological and mechanical properties of mortar, while basalt fibre is able to influence the static yield stress and flexural strength of 3DPM. The utilisation of regression models and isoresponse curves allows for the identification of significant trends and provides valuable insight into the behaviour of the material, while desirability function is useful to optimise overall performance of mix proportions to meet the desired performance objective at fresh and hardened states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9968163PMC
http://dx.doi.org/10.3390/ma16041748DOI Listing

Publication Analysis

Top Keywords

material strength
24
fly ash
24
basalt fibre
24
factorial design
16
rheological material
16
ash basalt
16
fibre superplasticiser
16
cement fly
16
measured properties
16
rheological properties
12

Similar Publications

Application of additive manufacturing TaBw01 porous tantalum rod in ARCO stage II osteonecrosis of the femoral head.

J Orthop Surg Res

December 2024

Center for Joint Surgery, Southwest Hospital, Army Medical University, Gaotanyan Street, Shapingba District, Chongqing, 400038, China.

Purpose: This study aims to investigate the suitable surgical strategies for applying TaBw01 porous tantalum rod across different stages of osteonecrosis of the femoral head (ONFH).

Methods: TaBw01 tantalum rods were fabricated using type FTaY-1 tantalum powder via the foam impregnation-sintering method. Mechanical testing with the Instron 8801 universal testing machine and finite element analysis (FEA) assessed single tantalum rod implantation and impaction bone grafting combined with rod implantation.

View Article and Find Full Text PDF

Unified description of thermal and nonthermal laser-induced ultrafast structural changes in materials.

Sci Rep

December 2024

Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Strasse 40, 34132, Kassel, Germany.

The ultrafast ionic dynamics in solids induced by intense femtosecond laser excitation are controlled by two fundamentally different yet interrelated phenomena. First, the substantial generation of hot electron-hole pairs by the laser pulse modifies the interatomic bonding strength and characteristics, inducing nonthermal ionic motion. Second, incoherent electron-ion collisions facilitate thermal equilibration between electrons and ions, achieving a uniform temperature on a picosecond timescale.

View Article and Find Full Text PDF

Assessment of mechanical properties and microstructure of Co-Cr dental alloys manufactured by casting, milling, and 3D printing.

J Prosthet Dent

December 2024

Associate Professor, Dental Biomaterials Research Laboratory, Department of Restorative Dentistry, Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada. Electronic address:

Statement Of Problem: The mechanical properties and microstructure of cobalt chromium (Co-Cr) alloys should be considered when choosing the best alloy for each clinical situation. More information is needed on the digital manufacturing methods of metals in dentistry, such as computer numerical control (CNC), and direct laser metal sintering (DMLS).

Purpose: The aim of this study was to investigate the effect of the 3 different Co-Cr manufacturing processes on the mechanical properties and microstructure of Co-Cr dental alloys.

View Article and Find Full Text PDF

Background/aim: Gangliosides regulate bone formation and resorption. Bone formation is reduced in mice lacking ganglioside GM2/GD2 synthase due to a decrease in osteoblasts. However, the effects of the loss of complex gangliosides by the deletion of both GM2/GD2 and GD3 synthases are unknown.

View Article and Find Full Text PDF

As the substrate, tobacco waste extract (TWE) can produce bacterial cellulose (BC), a biobased material. However, nicotine inhibits BC production (adding 0.8 g/L nicotine to the HS medium had a negative effect on BC synthesis) and needs to be removed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!